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Abstract—The Tor network uses a measurement system called
TorFlow to estimate its relays’ forwarding capacity and to
balance traffic among them. This system has been shown to be
vulnerable to adversarial manipulation, and inaccuracies even
in benign circumstances have long been observed. To solve
the issues with security and accuracy, we present FlashFlow,
a system to measure the capacity of Tor relays. Our analysis
shows that FlashFlow limits a malicious relay to obtaining a
capacity estimate at most 1.33 times its true capacity. Through
realistic Internet experiments, we find that FlashFlow measures
relay capacity with ≥89% accuracy 95% of the time. Through
simulation, we find that FlashFlow can measure the entire Tor
network in less than 5 hours using 3 measurers with 1 Gbit/s
of bandwidth each. Performance simulations using FlashFlow for
load balancing shows that, compared to TorFlow, network weight
error decreases by 86%, while the median of 50 KiB, 1 MiB,
and 5 MiB transfer times decreases by 15%, 29%, and 37%,
respectively. Moreover, FlashFlow yields more consistent client
performance: the median rate of transfer timeouts decreases by
100%, while the standard deviation of 50 KiB, 1 MiB, and 5 MiB
transfer times decreases by 55%, 61%, and 41%, respectively. We
also find that the performance improvements increase relative to
TorFlow as the total client-traffic load increases, demonstrating
that FlashFlow is better suited to supporting network growth.

I. INTRODUCTION

Tor [16] is the most popular system on the Internet for
anonymous communication. Tor is currently comprised of
about 6,500 geographically diverse volunteer-operated relays
transferring nearly 200 Gbit/s in aggregate traffic from be-
tween 2 million [7] and 8 million [26] daily active users.
Tor has seen significant growth recently, nearly doubling the
amount of traffic it forwards in the last two years [7].

Tor uses a load-balancing system called TorFlow [28] to
balance load from its millions of users across its thousands of
relays. The goal of TorFlow is to equalize Tor performance
across all clients regardless of which relays they use. It
receives bandwidth self-measurements from relays and also
makes active measurements of download speeds through each
relay. It then computes per-relay weights by multiplying the
self-measured bandwidths by their actively measured speed
relative to the average (see § II). Clients choose relays for
their circuits with probabilities proportional to these weights.

Previous work has shown that TorFlow is insecure. A mali-
cious relay can increase the fraction of traffic it can observe be-
yond the fraction of Tor bandwidth it provides [10, 12, 23, 34],
increasing its ability to deanonymize Tor users using a traffic
correlation attack [24, 27]. A main reason for TorFlow’s
vulnerability is that it trusts relays to accurately self-report
their observed capacity. Also, TorFlow’s active measurements

are supposed to occur concurrently with normal client traffic,
but a malicious relay can detect its measurement and throttle
client traffic to increase its measured speed.

In addition to its insecurity, TorFlow has been observed
to inaccurately measure the capacity of many relays [14].
It can take weeks for a relay’s true forwarding capacity to
be determined, and for some relays that never occurs [1].
Moreover, a relay’s weight can vary significantly even while
its capacity stays the same [5]. In part due to these problems,
Tor is reimplementing the TorFlow tool using more recent
libraries and language standards [25] but without changing
the fundamental aspects of the original design.

Unfortunately, TorFlow’s bias and variance are fundamental
to its design rather than to a particular implementation.
TorFlow ultimately relies on the existence of sufficient client
traffic to fill a relay’s capacity, as the active weight adjustments
are limited to correcting disproportionate allocations of that
client traffic. Therefore, relay capacities will be systematically
underestimated unless the network has a very high utilization
rate. Moreover, the active adjustments depend on the available
capacity at a relay during a short test download, which varies
based on transient and uncontrollable client demands.

We present FlashFlow to solve these problems. FlashFlow is
a system designed to securely, accurately, and quickly measure
the capacity of relays in the Tor network. In addition to pro-
viding weights for load balancing, the capacity measurements
allow Tor to accurately assess the network’s resources and plan
for the future.

The need for security heavily influences the design choices
of FlashFlow. We cannot make use of measurement approaches
that are vulnerable to manipulation, such as packet pairs [29].
Previously proposed systems attempt to measure Tor surrep-
titiously [9, 28] or to securely aggregate passive observations
made by many relays [23, 32]. FlashFlow takes a new ap-
proach to this problem by using separate measurement teams
that attempt to actively utilize the full capacity of relays. This
approach improves security as it requires the direct demon-
stration of a relay’s capacity rather than relying on an indirect
measurement that may be falsifiable. It also yields higher
accuracy, as the traffic is actively generated to determine a
relay’s limit, with the normal client traffic carefully reduced
to limit its impact on the result without excessively reducing
client performance. FlashFlow additionally aggregates results
from multiple measurers in order to accurately measure even
the highest-capacity relays in Tor.

We implement FlashFlow and conduct extensive experi-



ments in a lab setting, on the Internet, and in simulation. With
our suggested parameter settings, FlashFlow limits a malicious
relay to obtaining a capacity estimate of at most 1.33× its true
capacity (177× was demonstrated for TorFlow [23]). Through
Internet experiments across a range of geographic locations,
we find that FlashFlow is able to measure a target relay with
a capacity ranging from 10 Mbit/s to 1 Gbit/s to within 11%
of ground truth in 30 seconds 95% of the time (and within
20% of ground truth 99.8% of the time). Through simulation,
we find that FlashFlow can measure the entire Tor network
in less than 5 hours using 3 measurers each with 1 Gbit/s of
available bandwidth. Through private Tor network simulations
in Shadow, we find that FlashFlow reduces network weight
error by 86%. The resulting improvement in load balancing
reduces transfer times for all tested transfer sizes: the median
of 50 KiB, 1 MiB, and 5 MiB transfer times decreases by
15%, 29%, and 37%, respectively. FlashFlow also yields more
consistent client performance: the median rate of transfer
timeouts decreases by 100%, while the standard deviation
of 50 KiB, 1 MiB, and 5 MiB transfer times decreases by
55%, 61%, and 41%, respectively. Finally, we find that the
performance improvements increase further as the total client-
traffic load increases, demonstrating that FlashFlow is better
suited to supporting Tor network growth than is TorFlow.

Additionally, we are working to transition FlashFlow: we
wrote a Tor proposal [35], released our open-source code1,
and actively discuss transition plans with Tor developers.

II. BACKGROUND

Overview: As of August 2019, the Tor network includes about
6,500 relays that forward a combined 200 Gbit/s of Tor traffic,
and 9 Directory Authorities (DirAuths) that act as trust anchors
for the distribution of network information to Tor users. When
new relays join the network, they publish their public key and
network address to the DirAuths, who then verify reachability
and validate Tor protocol support. A voting process occurs
every hour, after which the DirAuths add valid relays to a
network consensus document signed by all authorities and dis-
tributed to all Tor clients and relays. The consensus document
stores information about all available relays and is required for
new clients to use Tor. New relays that appear in a consensus
are not used until their performance has been measured by
a majority of the 6 Bandwidth Authorities (BWAuths) that
participate in Tor’s load balancing system.
TorFlow: Each Bandwidth Authority runs the TorFlow [28]
relay-measurement tool to measure the relative performance
of relays in the Tor network over time. TorFlow conducts
performance measurements of Tor relays by creating 2-hop
Tor circuits through them and downloading one of a set of
13 fixed-sized files (2i KiB for i ∈ {4, . . . , 16}) from a
known destination through each circuit. Every hour, TorFlow
aggregates the latest relay measurements and produces a load-
balancing weight for each relay.

1https://gitlab.torproject.org/pastly/flashflow

To assist in balancing load across relays, TorFlow attempts
to produce larger weights for relays that can better handle Tor
traffic. To compute the weights, TorFlow relies on two data
sources. First, TorFlow uses each relay’s self-reported band-
width information that is published every 18 hours in a server
descriptor. This information includes any rate limit set by the
relay (e.g., with the BandwidthRate and BandwidthBurst
options [8]), as well as its observed bandwidth, which is the
highest Tor throughput that the relay was able to sustain for
any 10-second period during the last 5 days [15, §2.1.1]. From
this information, TorFlow computes the relay’s advertised
bandwidth as the minimum of the observed bandwidth and any
rate limit set by the relay. Second, TorFlow uses the results
of its own measurements to compute for each relay a ratio of
the measurement speed of the relay to the mean measurement
speed of all relays in the network. Finally, TorFlow computes
a weight for each relay by multiplying the computed speed
ratio for that relay by its advertised bandwidth.
Load Balancing and Circuits: The TorFlow weights are
collected and reported to the Directory Authorities, added to
the following network consensus, and distributed to clients.
Tor clients then use the normalized weights as probabilities
when selecting relays for their paths through the Tor network
in an attempt to balance user load across relays. To use
Tor, a client creates a circuit through a sequence of three
relays, over which a TCP connection can then be made to
any Internet host. Communication cells of a fixed 514-byte
length are sent through the circuit and are encrypted (or
decrypted, depending on the direction) by each relay using a
key exchanged with the client during circuit construction.
Terms: We use the term throughput to mean an amount of
traffic that an application or a segment of the network stack
(e.g., TCP) has been measured to have forwarded (i.e. received
and then sent). We use the term capacity to mean the maximum
throughput that an application or network segment can handle.
Thus a Tor throughput is an amount of traffic that a Tor
process has been measured to have forwarded, potentially
as an estimate of Tor capacity. Tor throughput includes cell
payloads and headers but excludes TCP, IP, and other network
packet headers. Finally, Tor ground truth is an estimate of
Tor capacity experimentally determined by sending load from
increasing numbers of simulated clients and measuring them
at the relay. Tor ground truth measurements are accurate but
expensive and require trust in the relay.

III. FLASHFLOW DESIGN

We now present the design for FlashFlow, a system to
measure the capacity of Tor relays. This section is organized
as follows: Section III-A provides an overview of FlashFlow’s
design. Section III-B describes the process of performing a
single measurement. Section III-C describes how a relay can
be measured multiple times to obtain an accurate measurement
and how old and new relays are measured differently. Finally,
Section III-D describes how a measurement schedule for the
entire Tor network is created.
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Fig. 1: Example of one FlashFlow team as it measures two relays.
The BWAuth is the coordinator and its measurement team. It produces
a v3bw file for a DirAuth to use for relay weight voting.

A. Overview

Design Criteria: We have designed FlashFlow according to
the following design criteria.
- Efficiency: We should not require too many resources (most

prominently bandwidth) of the operators.
- Accuracy: The measurements we conduct should allow us

to estimate relay capacity with high accuracy.
- Speed: We should quickly measure single relays (e.g., in

seconds) and the entire network (e.g., in hours).
- Security: We should provide strong security guarantees that

limit the amount that a malicious relay can cheat to cause
an artificial increase in its weight.

- Performance: We should limit the impact of our measure-
ments on client performance, and the weights we produce
should improve performance due to better load balancing.

Key Idea: The key technique behind FlashFlow is to actively
measure the full capacity of Tor relays using a team of
multiple measurement hosts. This approach improves security
over prior approaches, as relays must demonstrate their true
capacity, a process that cannot be faked. It also improves
accuracy, as the measurement does not depend on background
traffic or on other relays.
Setup: A FlashFlow team consists of two parts: a measurement
team consisting of one or more measurers, and one coor-
dinator. The FlashFlow team constitutes a BWAuth; it can
be operated entirely by a DirAuth, using as many hosts as
necessary to meet the bandwidth requirements, or by an entity
the DirAuth trusts that has spare resources to use for relay
measurement (e.g. an ISP, hosting provider, or non-profit like
torservers.net). Figure 1 shows a FlashFlow team with two
measurers as they measure two Tor relays.

The measurers run on hosts whose resources are dedicated
to the measurement process. The measurers cooperatively
measure relays, so the primary requirement for them is that
they collectively have sufficient network capacity to measure
all Tor relays. A measurement team is considered to have
sufficient capacity if the sum of capacities over all measurers
is at least some constant factor f (see § V) times the highest
Tor capacity among relays. FlashFlow is designed to achieve
accurate measurements given sufficient network capacity, re-
gardless of network latency.

The coordinator controls the measurement team, determines
the measurement schedule, and aggregates the results. A

measurement schedule is created for each measurement period,
which divides time into constant-length intervals. Multiple
BWAuths, each with its own measurement team, independently
run FlashFlow. Each BWAuth separately measures each relay
during a period. The coordinator records the results as weights
in a v3bw file, a format already used by DirAuths. Then
standard Tor processes take over: the DirAuth reads the v3bw
files produced by its BWAuth and votes with other DirAuths
for consensus on relay weights every hour.
Trust and Diversity: As in Tor currently, each DirAuth
chooses to trust some BWAuth, and the DirAuths place the me-
dian of their measurements in the consensus. Thus the trust as-
sumption in FlashFlow is that a majority of DirAuths (and their
associated BWAuths) are honest. We recommend and expect
the simple case that each DirAuth trusts its own BWAuth; thus
FlashFlow requires an honest majority among the BWAuths.
Measurement teams are deployed across network locations
reflecting the diversity of Tor clients and relays to mitigate
unrepresentative measurements resulting from unusually high
or low network capacity between a relay and a measurement
team (e.g., due to existing in the same data center).

B. A Single Measurement

A BWAuth initiates a single measurement by creating an
authenticated connection from its coordinator to each measurer
(the green connections in Figure 1) and to the target relay (blue
connections). Authentication is performed using the public
key of the coordinator, which we assume is distributed in the
Tor network consensus. The coordinator sends the target the
public keys of each measurer involved in the measurement.
While connected, the measurers accept instructions from the
coordinator, and the relay accepts authenticated measurement
connections (red connections) from the measurers indicated by
the coordinator. The relay will only accept connections from a
given coordinator and its team once per measurement period.

The coordinator will divide the total resources needed for
the measurement across its m measurers M1, . . . ,Mm. It
allocates a quantity ai of the measurement capacity of Mi to
the measurement (see § III-C for choosing ai), where ai = 0
is possible and indicates that Mi does not participate in the
measurement. Each measurer Mi starts ki = max(1, ci/pi)
modified Tor processes for the measurement, where ci is the
number of available CPU cores on Mi and pi is the expected
number of parallel measurements in which Mi will participate
during the measurement interval. The measurement-traffic rate
of the ki processes thus started for a given measurement
is limited by setting the BandwidthRate parameter of each
modified Tor process on the measurer to ai/ki. A constant
total number of TCP sockets s is used across all measurers
(the value for s is determined experimentally), and each Mi

uses an even share s/m of them, with each measuring process
at Mi using s/(mki) of the sockets.

Each measuring process creates one TLS connection with
the target relay for each of its allocated sockets. Over each
such connection, a special measurement circuit is constructed
using a new type of circuit-creation cell. A key exchange is
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performed, but the circuit will not be extended further. All cells
received on the circuit by the target relay will be decrypted
and then returned to the measurer. The target relay schedules
cells on measurement circuits using a separate cell scheduler to
ensure high throughput even with fewer sockets than typical
for a Tor relay (the existing scheduler [21] is designed for
priority scheduling across many sockets [18]). Moreover, the
target relay enforces a maximum ratio r between cells sent by
the normal scheduler and those overall, and it attempts to send
as much normal traffic as possible subject to this maximum.
This design provides an accurate measurement while ensuring
that normal traffic continues to be relayed.

A relay is measured by a BWAuth during a measurement
slot. During this time, each measuring process sends mea-
surement cells filled with random bytes over the measurement
circuits. The process sends such cells as fast as possible. The
target relay decrypts those cells using the circuit key, and then
returns them on the circuit. Note that both the measurer and the
target perform TLS encryption and decryption, but the target
alone performs Tor’s cell decryption. This design minimizes
the computational load of the measurer while replicating the
cryptographic operations that the target would perform on
normal traffic, which is needed to get an accurate estimate of
its forwarding capacity. To ensure that the target is correctly
decrypting and forwarding cells, the measurer records the
contents of each cell sent with probability p (e.g., p = 10−5)
and checks that the returned content of such cells is correct,
reporting failure from the measurement if not.

A measurement slot lasts a constant number of seconds
t (see § V). The BWAuth can end the measurement in this
slot early due to a failure reported by a measurer. During
the measurement slot, the BWAuth receives from the ith
measuring process the number of measurement bytes xij that
were relayed by the target to the process in the jth second.
The BWAuth also receives from the target the number of
normal traffic bytes yj that the target relayed in the jth
second. At the end of the measurement, the BWAuth computes
per-second sums of measurement traffic: xj =

∑m
i=1 x

i
j . It

limits the per-second normal traffic to the largest value that
is consistent with the measurement traffic and the traffic ratio
r: yj = min (yj , xjr/(1− r)). The BWAuth computes a per-
second estimate zj = xj + yj of total bytes relayed by the
target, and then it sets its capacity estimate to the median: z =
median (z1, . . . , zt). Incorporating the normal traffic results
in better capacity estimates, and enforcing the expected ratio
limits how much a malicious relay can increase its capacity es-
timate by reporting more normal traffic than it actually relayed.

The process of performing a relay measurement assumes
the measurers’ capacities are known. Therefore, when deploy-
ing a new FlashFlow team, modifying an existing team, or
whenever a measurer’s capacity is expected to have changed,
the BWAuth must estimate the network forwarding capacity of
its measurers. Measuring measurers is easier than measuring
relays because (i) only a lower bound on the measurement
capacity is needed, as an underestimate will only affect the
speed of the measurement process and not its accuracy; and

(ii) it is sufficient to measure the speed at which network traffic
can be simultaneously sent and received, as the measurer does
not relay bytes through Tor. Therefore, to estimate the network
forwarding capacity of a measurer, the BWAuth instructs it to
use iPerf [3] to exchange bidirectional traffic with each other
measurer on the team concurrently. This measurement uses
UDP to eliminate the effects of TCP congestion control that
are unlikely to affect the measurement of all relays. A 60-
second measurement is performed, and the capacity estimate
is the median of the per-second speeds reported by iPerf.

C. Measuring a Relay

Measuring a relay potentially involves a sequence of mea-
surements because the measurer capacity required for an accu-
rate measurement is unknown. Instead of using the maximum
amount of measurer capacity for each relay, we instead use
informed guesses about relays’ capacities and allocate only the
measurer capacity needed for those guesses. If the measure-
ment indicates that the allocated capacity was sufficient for
a given target, then we conclude the measurement process.
Otherwise, we perform another measurement of the target
with a higher guess and more measurer capacity. This process
reduces the total amount of measurer capacity used to measure
the entire network.
Measuring Old Relays: When measuring an old relay, that
is, one that has an existing capacity estimate z0, we simply
use z0 as a guess for its current capacity. The BWAuth needs
to allocate f · z0 total capacity across the measurers, where
f is an excess allocation factor. Let ci denote the network
capacity of measurer Mi. The BWAuth can allocate to this
measurement any amount ai of the capacity of Mi subject to
0 ≤ ai ≤ ci and

∑
i ai = f · z0. Optimizing the distribution

of measurer capacity to maximize the number of relays that
can be measured at once is computationally hard, so we use
a greedy heuristic to allocate capacity by repeatedly assigning
the measurer with the most residual capacity to use all its
remaining capacity or as much as is needed to reach f · z0.

The allocation factor f is defined so that the measurement
has a high probability of being accurate and conclusive. It
depends on a multiple g that is just large enough so that, for
error parameters ε1, ε2 ≥ 0, if a relay with true capacity x is
measured using at least gx measurer capacity, then the capacity
estimate z is almost certainly greater than (1− ε1)x and less
than (1 + ε2)x. The value for g is determined experimentally.
In addition to g, f includes a factor (1 + ε2)/(1 − ε1) to
ensure that z cannot result from values x′ > x for which the
measurement errors may be larger. The excess allocation factor
is thus f = g(1 + ε2)/(1− ε1).

Using the capacity allocations, the team performs a mea-
surement and obtains a capacity value z. This value is taken
as the new estimate if it is small enough relative to the total
measuring capacity that it could only result from a true relay
capacity close to z. Specifically, z is the new capacity estimate
if z <

∑
i ai(1 − ε1)/g. When this is true, the true relay

capacity x must be greater than z/(1 + ε2) and less than
z/(1 − ε1), which implies that the estimate is accurate, i.e.,
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that z ∈ ((1 − ε1)x, (1 + ε2)x). If the capacity estimate z is
not sufficiently small, then the relay must be measured again
using a higher total measurer capacity. In this case, we set
z0 = max (z, 2z0), which ensures the allocated capacity will at
least double, and we repeat the measurement with the updated
capacity estimate z0.

If the original estimate z0 is the true capacity, then the
measurement process will almost certainly conclude after one
measurement. This is true because the measuring capacity was
chosen to be large enough that z < (1 + ε2)z0 with high
probability, and when that is true the condition to use the z
as the new capacity estimate is satisfied: z < z0(1 + ε2) =∑

i ai(1− ε1)/g.
Measuring New Relays: When measuring a new relay, which
has no capacity estimate, we initially guess the capacity based
on the capacity distribution of existing relays. New relays ei-
ther have never been seen before or were last measured so long
ago (e.g., a month) that their capacity measurements are no
longer reliable estimates. For such relays, we use as a capacity
estimate z0 the 75th percentile measured capacity among Tor
relays over the past month. When this value is sufficiently
smaller than the maximum capacity measurable, this allows
us to devote less measurer capacity to the measurement. We
then expect that one measurement will be sufficient for 75%
of new relays. Given this estimate, the measurement proceeds
as with old relays, where again if the measurement z is too
high relative to the allocated capacity, the relay is scheduled
for another measurement with estimate z0 = max (z, 2z0).

D. Measuring the Network

To measure all relays in the network, the BWAuths peri-
odically determine the measurement schedule. The schedule
determines when and by whom a relay should be measured.
We assume that the BWAuths have sufficiently synchronized
clocks to facilitate coordinating their schedules. A measure-
ment schedule is created for each measurement period, the
length p of which determines how often a relay is measured.
We use a measurement period of p = 24 hours.

To help avoid active denial-of-service attacks on targeted
relays, the measurement schedule is randomized and known
only to the BWAuths. Before the next measurement period
starts, the BWAuths collectively generate a random seed (e.g.,
using Tor’s secure-randomness protocol [4]). Each BWAuth
can then locally determine the shared schedule using pseudo-
random bits extracted from that seed. The algorithm to create
the schedule considers each measurement period to be divided
into a sequence of t-second measurement slots. For each
old relay, slots for each BWAuth to measure it are selected
uniformly at random without replacement from all slots in the
period that have sufficient unallocated measurement capacity
to accommodate the measurement. When a new relay appears,
it is measured separately by each BWAuth in the first slots with
sufficient unallocated capacity. Note that this design ensures
that old relays will continue to be measured, with new relays
given secondary priority in the order they arrive.

IV. SECURITY ANALYSIS

Properties: FlashFlow is designed to be secure against an
adversary that attempts to cause incorrect measurements. For
the specific application of load balancing, we are particularly
focused on preventing malicious relays from obtaining incor-
rectly large capacity estimates and honest relays from obtain-
ing incorrectly small estimates. The threat model includes an
adversary that runs malicious relays, malicious clients, some
malicious BWAuths, and some malicious DirAuths. Honest
BWAuths are assumed to use honest measurement teams. We
require that a majority of BWAuths are honest. Our threat
model does not include an AS-level adversary, one that runs
a Sybil attack, or one that can change capacities quickly.

The FlashFlow design requires a target relay to demonstrate
its capacity in a way that cannot be falsified. Thus, rather than
depending on self-reports (as TorFlow does fundamentally),
FlashFlow has measurers actually send and receive the same
cells as normal Tor clients would. Moreover, the sent cell
contents are randomly generated and the received contents
checked at random to ensure that the target is properly receiv-
ing, decrypting, and returning the cells during the measure-
ment. A relay that forges responses (e.g., to skip decryption or
to send early before receiving) is detected with overwhelming
probability when a response cell is checked due to the random
contents, and a response cell is checked with probability p.
As a result, a malicious relay that forges k responses has
approximately a (1− p)−k chance of evading detection.

Relays do self-report normal client traffic during measure-
ment. However, that client traffic is supposed to be limited to
at most a fraction r of the total traffic, and during aggregation
the BWAuth limits the reported normal traffic to be at most
r times the total. A malicious relay could send no normal
traffic but report the full amount, and it could thereby inflate
its capacity estimate by at most a factor of 1/(1− r).

Several features also prevent a relay from providing high
capacity only while it is being measured. Measurement by
any given BWAuth is performed at a randomly selected slot
in a measurement period, and the randomness is known only to
the BWAuths. Furthermore, the relay is measured by multiple
BWAuths at separate random times, and the median of the
estimates is used. For an adversary that does not control a
BWAuth, an attempt to provide high capacity only during
a fraction q < 1/2 of measurement slots will fail with
probability at least 0.5. More accurately, with n BWAuths
the probability is

∑n
k=n/2 Pr[B(n, 1− q) = k], with B(n, p)

binomially distributed. Relays are notified of a measurement
at its beginning, but due to the shortness of the measurement
slot (e.g. t = 30 seconds), a malicious relay has little time
to adjust its capacity dynamically. The frequency with which
relays are measured also forces malicious relays to be able
to consistently support their measured capacities. A relay is
measured once every period by each BWAuth, so even after a
relay has been measured by a majority of BWAuths (which is
expected to take a majority of the period), it can only reduce
its capacity until the next period. The efficiency of FlashFlow
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allows the measurement period to be relatively short (e.g. every
24 hours) and thus gives little time for a malicious relay to
act at a reduced capacity.

Another security benefit of a randomized measurement
schedule is that it limits the opportunity for malicious clients
to perform a targeted denial-of-service attack. An adversary
may try to do this in order to reduce the measured capacity of
certain honest relays, which would cause Tor’s load balanc-
ing to shift traffic away from them. However, assuming the
adversary controls no BWAuth, the adversary cannot predict
when an honest relay will be measured and must perform any
denial-of-service attack during most of the measurement slots
in order to expect to affect the median measurement. The
adversary may try to detect when a relay has started being
measured, but we argue this would lead to too many false
positives to be practical: (1) the attacker has very little time
(< 15 seconds given a 30 second measurement) to decide the
target relay is being measured as it will then need to DoS the
relay for the majority of the measurement in order to affect
the median per-second throughput during the measurement, (2)
for relays utilized on average less than what r would allow
during a measurement, the attacker will never notice a drop in
throughput, and (3) for relays that regularly dip below what
r would allow, it would look like the relay is being measured
many times per day.

Finally, we observe that it is difficult for an adversary to
prevent relays from being measured by flooding the network
with new relays. Old relays are guaranteed to be measured
during a measurement period because they are scheduled first.
New relays are given second priority, and moreover they are
served on a first-come, first-served basis, so benign new relays
are eventually measured.
Limitations: In some cases malicious relays may be able to
cause FlashFlow to obtain larger capacity estimates than the
relays could sustain in Tor. We argue that these limitations are
shared by Tor’s existing system, TorFlow, and that FlashFlow’s
security and accuracy advantages make it a significant im-
provement. Moreover, we suggest ways to improve FlashFlow
in the future to mitigate these issues.

One limitation is that an adversary that has access to
multiple IP addresses on the same machine can surreptitiously
run multiple relays on the machine simultaneously. Tor only
accepts two relays at the same IP address (a restriction that
was instituted as a defense against falsely obtaining a large
total bandwidth weight [11]). FlashFlow is likely to measure
multiple relays on the same machine at separate times, so each
relay would obtain a capacity estimate that is the capacity of
the shared machine. Tor considers this a Sybil attack, and
it currently requests that each relay operator identifies all
relays that they run with the MyFamily option [8]. Moreover,
Tor has made use of systems designed to detect Sybils on
its network [37]. Pairs of MyFamily relays (or suspected
Sybils) can be measured simultaneously with FlashFlow to
determine if they share the same Tor capacity, and then the
measured capacity averaged over the members of a connected
set. The current TorFlow system shares this issue, as the

speed measurements are performed at different times, and an
adversary can detect when one of its relays is being measured
and reserve all capacity for the measurement circuit [23, 34].

Another limitation is that FlashFlow measurements are so
short that they might measure the burst speed of a host
rather than its sustainable Tor capacity. For some ISPs and
hosting providers, higher burst capacities are supported than
are consistently achievable. This can be true as a matter of
practice, as a network shared by many hosts may occasionally
be underutilized, or as a matter of policy, as providers may
institute price-based limits on the speed of network traffic
from a host. In the former case, if the burst speed is due
to variable congestion of shared resources, then we expect the
median of the separate and randomly scheduled measurements
by different BWAuths to produce good estimates of average
performance. In the latter case, if such limits are applied faster
than half the length of our measurement slots (e.g., in less
than 15 seconds), then FlashFlow should obtain a sustainable
capacity estimate. Moreover, we again observe that this issue
currently affects TorFlow, which performs relatively short
downloads of files (none larger than 64 MiB). An adversarial
relay that can change its capacity quickly can do so such that it
is measured at a high capacity that it otherwise never provides
to clients; periodic audits or network-wide accounting (à la
PeerFlow [23]) could help mitigate this attack.

We further note that FlashFlow is designed to measure Tor
capacity and not to detect if client traffic is actually relayed.
A malicious relay can send little to no real client traffic while
obtaining accurate capacity estimates from FlashFlow by only
sending traffic on measurement circuits. This is an additional
limitation shared with TorFlow, in which the measurement cir-
cuits are easily detected [34] and thus weights can be obtained
while denying all traffic not used for measurement [23]. Such
behavior seems highly observable, however, and so we leave
detecting such misbehavior as a future enhancement.

V. NETWORK EXPERIMENTS

We measure and evaluate FlashFlow’s performance and
accuracy with a set of network experiments.
A. Preliminary Setup and Analysis

Internet Vantage Points: To perform realistic measurements
on the Internet, we obtain hosts from a set of geographically
diverse network locations. Table I summarizes the characteris-
tics of our hosts located in Fremont, CA (US-SW), Santa Rosa,
CA (US-NW), Washington, DC (US-E), Bangalore, India
(IN), and Amsterdam, Netherlands (NL). Our host choices
are motivated by the need to demonstrate FlashFlow obtains
accurate results under a variety of network conditions (e.g.
latency and packet loss) at the measurers and relay.

Because network bandwidth is an important factor that will
affect our experiments, and because the supported bandwidth
was not advertised for all hosts, we empirically estimate it
using iPerf [3] (a network performance measurement tool). We
perform a set of experiments where for each host we instruct
all other hosts to perform a UDP iPerf measurement to it at
the same time for 60 seconds. We sum together the per-second
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TABLE I: Summary of the hosts used in Internet experiments

US-SW US-NW US-E IN NL

Virtual No Yes No Yes Yes
Network Type? D.C. D.C. Res. D.C. D.C.

BW (claimed) (Mbit/s) 1000 1000 1000 N/A N/A
BW (measured) (Mbit/s) 954 946 941 1076 1611

RTT to US-SW (ms) 0 40 62 210 137
CPU cores 8 8 12 2 2

RAM (GiB) 32 4 32 4 4
? Network type is datacenter (D.C.) or residential (Res.)

results from each host and present the median of the summed
per-second results in the “BW (measured)” row in Table I.
All three of the US hosts are clearly limited to about 1 Gbit/s.
IN and NL achieve higher throughput despite their hosting
provider making no claims about their capacity.
Tor Processing Limits: We evaluate Tor’s processing limits
to estimate the throughput that a FlashFlow team must
support in order to measure the fastest Tor relays. We set up
a lab experiment that attempts to maximize throughput while
minimizing the effect of limiting factors including network
latency, congestion and flow control algorithms in TCP and in
Tor, the capacity of the underlying network, and the number
of Tor circuits and TCP sockets used during the measurement.
Over a 120-second measurement, we found that the maximum
capacity of a Tor relay was 1.25 Gbit/s, achieved while using
20 TCP sockets. Tor reached 100% CPU utilization during this
measurement, indicating that Tor’s single-threaded scheduling
is the performance bottleneck. This measurement result consti-
tutes an upper bound of the capacities that FlashFlow should
be able to measure, and it is consistent with the fastest claimed
capacity of a Tor relay, which was 998 Mbit/s in July 2019 [7].

Because we will use our US-SW host to run target relays
in our Internet experiments, we also establish ground-truth
Tor capacity on it by running an experiment similar to the
one described above. We run a relay on US-SW, and use
the remaining machines to run Tor processes that support
the measurement of US-SW. The target relay on US-SW
achieves a maximum median throughput of 890 Mbit/s while
consuming 95–100% of a CPU core, and so we will use that
amount as its ground-truth capacity.
FlashFlow Implementation and Setup: We implement
FlashFlow as a 1,200-line patch to Tor v0.3.5.7 containing
measurer- and relay-side measurement support and a 1,300-
line C/Rust program that controls FlashFlow measurers. The
experimental setup for the remainder of this section is as
follows. US-SW runs a single target Tor relay. Some com-
bination of the remaining hosts (US-NW, US-E, IN, and NL)
measure the target relay. We configure FlashFlow with the
following settings, which were determined through a sequence
of experiments (details are excluded for space reasons): the
number of measurement sockets s = 160 (the s that maximizes
throughput on the slowest host); the multiplier g = 2.25 (the
smallest g that yields sufficient accuracy); the measurement
duration and strategy is to take the median throughput achieved
in t = 30 seconds (reasonable balance between time-to-result
and accuracy); and error bounds of ε1 = 0.20 and ε2 = 0.05.

0.7 0.8 0.9 1.0 1.1
Tor throughput (fraction of capacity)

0.00

0.25

0.50

0.75

1.00

C
D

F

10 Mbit/s

250 Mbit/s

500 Mbit/s

750 Mbit/s

unlimited

Fig. 2: Evaluation of FlashFlow’s accuracy from 24 hours worth of
30 second experiments with multiplier g = 2.25. CDFs are over the
median per-second throughput measured by each team.

B. Measurement Accuracy

We evaluate FlashFlow’s accuracy with and without client
background traffic.
Without Client Background Traffic: We conduct a set of
Internet experiments in which we configure a target relay
on US-SW and form measurement teams from all possible
unique subsets of the remaining machines from Table I. We
set throughput limits of 10, 250, 500, 750, and unlimited
Mbit/s on the target; for each such limit we test how well
all measurement teams can measure it, where each measurer
in each team is limited to its share of the factor f of measurer
capacity that is necessary to measure the target using g = 2.25.
Each such measurement (a team measuring a throughput-
limited relay) runs for 30 seconds and is repeated 7 times over
the course of 24 hours. The result of each measurement is the
median per-second throughput over the 30 second period.

Figure 2 shows the accuracy of our measurements, catego-
rized by the Tor capacities at the target. Across all configured
capacities, all but one experiment (99.8%) produces results
within ε1 = 0.20 and ε2 = 0.05. FlashFlow measures within
11% error (0.89–1.11 times capacity) in 95% of experiments.
With Client Background Traffic:

To evaluate FlashFlow’s ability to measure a relay with
realistic client background traffic, we run a Tor relay on US-
SW and connect it to the real Tor network (for convenience,
we use another identical machine in the same datacenter).
We run the relay for 60 days before starting any FlashFlow
measurements so that it is measured by the existing BWAuths,
earns the Guard flag, and attracts a significant amount of client
traffic. The relay is configured to limit its Tor throughput to
250 Mbit/s, and we measure it with one FlashFlow measurer
running on NL. FlashFlow reports for each second the amounts
of measurement traffic and background traffic. We test ratios
r between 0.1 and 0.5 to limit background traffic (§ III-B).

Our measurements show client background traffic of 50
Mbit/s on average before and after measurement. During
measurement, the total traffic is at the relay’s capacity of 250
Mbit/s. When r ≤ 50/250 = 0.2, background traffic during
measurement is consistently measured at 250r, and for larger
r the background traffic stays at its original rate.

We conclude that FlashFlow successfully limits background
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traffic to at most the configured ratio r. Because Tor’s uti-
lization rate has been at about 0.5 on average for the last
several years [7], we recommend r = 0.25, which should
reduce background traffic rates during measurement by about
half while limiting a malicious relay’s measurement inflation
factor to 1/(1− r) = 1.33 (see § IV). We emphasize that the
ratio only affects performance when a relay’s utilization rate
rises above r. Moreover, it is only applied during 30 second
measurement that happens once per day per BWAuth, i.e.,
an insignificant 0.035% of each day per BWAuth. For more
details on this experiment, see Appendix A.

VI. SIMULATION EXPERIMENTS

Having demonstrated FlashFlow’s efficacy in measuring live
relays over the Internet in § V, we now use simulation to
conduct a more complete analysis of measurement efficiency,
cost, accuracy, and performance. Simulation allows us to
analyze a full Tor network deployment of FlashFlow, which
is not possible in our limited network deployment in § V.

A. Measurement Efficiency and Cost

Efficiency: We evaluate the efficiency of FlashFlow in mea-
suring the entire Tor network in terms of its speed. To estimate
these values, we simulate measurement of the network by a
single team. We use a greedy scheduler to determine the fastest
that we can measure the entire network. Then we replay the
appearance of new relays in the consensus and determine how
efficiently they can be measured as well.

We determine the state of the Tor network over July
2019 using archived Tor consensuses and descriptors [7]. We
estimate the capacity of relay r at time t to be the minimum
of the rate limits set in the relay’s descriptor at t and the
largest observed bandwidth for r in the period June–August
2019. Among all relays, the largest capacity thus determined
for July 2019 is 998 Mbit/s.

We estimate how fast FlashFlow could measure the entire
network for each day in July 2019. For this estimate, we use
the first consensus in the day, and we assume that all of the
relays in the network have been measured before and thus
have capacity estimates. We greedily assign relays to each
slot in order, with each assignment choosing the largest relay
for which there is available capacity to measure. We use a
measurement team consisting of 3 measurers with 1 Gbit/s
capacity each. This team has capacity that is just larger than
the minimum required to accurately measure the largest relay
seen, which due to the excess factor f = 2.84 and maximum
capacity of 0.998 Gbit/s is 2.84 Gbit/s.

The result for the median day is that 5 hours (i.e. 599 30-
second slots) are needed to measure the entire network, with
a minimum of 4.9 and a maximum of 5.1. The schedule mea-
sures a median of 6,419 relays (min: 6,355, max: 6,528) with a
median total capacity of 608 Gbit/s (min: 592, max: 621). This
speed suggests that the entire network could be measured at
least every 24 hours with significant spare capacity to measure
new relays as they join the network.

We next estimate how quickly new relays can be measured.
A relay is considered new if it has not been seen in the last
month. We consider each consensus in July 2019 and assume
relays in the first consensus are not new. During this time, there
is a median of 3 new relays in a consensus (min: 0, max: 98).
We use as the new-relay capacity estimate the 75th percentile
advertised bandwidth from descriptors in June 2019, which
is 51 Mbit/s. The simulation result is that the median time
to measure new relays in a consensus is 30 seconds (min:
0 minutes, max: 13 minutes). These results show that new
relays can be measured within minutes even while FlashFlow
re-measures the entire network every 24 hours.
Cost: To calculate the amount of added traffic to the current
Tor network per day, we calculate fCt, with the excess factor
f = 2.84, the total capacity of the network C = 608 Gbit/s,
and the measurement duration t = 30 seconds. This produces
5.89 TiB of traffic per day. During June–August 2019, the Tor
network forwarded about 200 Gbit/s, or about 1,965 TiB per
day, thus each FlashFlow team adds approximately 0.3% to
Tor’s current load, which is a reasonably small amount.

Deploying FlashFlow today with our recommended param-
eters requires similar bandwidth capacity from its operators
as does TorFlow. With that capacity, FlashFlow can measure
a growing Tor network up to 24/5 = 4.8 times the current
size every day. Moreover, by accepting a lower measurement
frequency, the same measurer capacity scales even further.
Otherwise, additional measurer capacity is necessary.

B. Measurement Accuracy and Performance

We evaluate FlashFlow in a full Tor network deploy-
ment using Shadow [20], a discrete-event network simulator
and a standard tool for conducting Tor performance experi-
ments [31]. We configure a private Tor test network in Shadow
that is 5% of the size of the public network and contains: 3
DirAuths; 328 relays; 397 TGen clients that use Tor Markov
models to generate the traffic flows of 40k Tor users [22]; and
40 TGen clients that mirror Tor’s performance benchmarking
process by repeatedly downloading 50 KiB, 1 MiB, and 5 MiB
files (timeouts are set to 15, 60, and 120 seconds, respectively).
The relays were sampled from Tor’s consensus files from
January 2019 [7] and placed in the closest city in Shadow’s
Internet map according to IP address and following best
practices [19]. Each relay r is configured with a true capacity
Cr that is equal to the maximum observed bandwidth of the
corresponding relay in Tor during January 2019.
Accuracy: To measure accuracy, we first run a base FlashFlow
simulation (using our implementation and configuration from
§ V) in which FlashFlow uses 3 measurers with capacities
of 1 Gbit/s each to measure the Tor network and produce a
bandwidth file containing a capacity estimate Cr and weight
W r for each relay r. We repeat the simulation with TorFlow,
which produces a bandwidth file with weights only (i.e.,
weights W r are generated directly rather than deriving them
from capacity estimates Cr). We use the capacity estimates
C, weight estimates W , and the corresponding ground truths
(i.e., true capacities Cr and weights Wr = Cr/

∑
s Cs)
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−3 −2 −1 0

log10(Relay Weight Error)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
F

ra
ct

io
n

FlashFlow

TorFlow

(b) Relay Weight Error Ŵr

Fig. 3: Relay measurement error during concurrent relay measure-
ment in Shadow simulations. The corresponding network capacity
error Ĉ is 14% for FlashFlow, while the corresponding network
weight error Ŵ is 4% for FlashFlow and 29% for TorFlow (see
Table III).

to compute relay capacity error Ĉr = |1 − (Cr/Cr)|, re-
lay weight error Ŵr = W r/Wr, network capacity error
Ĉ = 1 − (

∑
r Cr/

∑
r Cr), and network weight error Ŵ =∑

r |W r −Wr|/2. See Appendix B for a summary of these
variables.

Figure 3 shows the relay capacity and weight error as CDFs
over all relays. Figure 3a shows that both the median and
inter-quartile range of capacity error across relays is 16%,
and the corresponding network capacity error Ĉ is only 14% in
total. Figure 3b compares the relay weight error for FlashFlow
and TorFlow; x = 0 represents ideal relay weighting, and
each unit on the x-axis represents a 10× increase in error. We
observe that more than 80% of relays are underweighted by
TorFlow compared to their ground truth capacity. FlashFlow
shows considerable improvement in relay weighting, with a
total of only 4% network weight error Ŵ compared to 29%
for TorFlow. We expect that the significant reduction in weight
errors that we observed for FlashFlow will result in both better
load balancing and better performance for Tor users.
Performance: To measure performance, we use the bandwidth
files produced by FlashFlow and TorFlow in the above simula-
tions to run 3 new simulations for each system; one simulation
is configured with normal (100%) traffic load, one with 15%
extra (115%) traffic load, and one with 30% extra (130%)
traffic load. In all simulations, Tor is configured to form a
consensus with the previously measured relay weights, thus
client load is balanced according to these weights.

Figures 4 and 5 show considerable improvement in per-
formance when using the FlashFlow weights compared to
TorFlow across all metrics and benchmarks. Overall, our
simulations demonstrate that FlashFlow is significantly more
capable of balancing load in Tor than is TorFlow.

Figure 4 shows that the FlashFlow benchmark clients out-
perform the TorFlow benchmark clients across all transfer
sizes: in the 100%-loaded simulations, the median of 50 KiB,
1 MiB, and 5 MiB transfer times decreases by 15%, 29%, and
37%, respectively. FlashFlow also yields more consistent client
performance: in the 100%-loaded simulations, the standard

deviation of 50 KiB, 1 MiB, and 5 MiB transfer times de-
creases by 55%, 61%, and 41%, respectively. We also observe
that FlashFlow better supports network growth because the
performance improvements increase as the network becomes
more loaded: relative to TorFlow, the median 1 MiB transfer
time in FlashFlow decreases by an additional 28% and 29%
when the network is 15% and 30% more loaded, respectively.
Surprisingly, performance in the 130%-loaded FlashFlow sim-
ulation was still better than performance in the 100%-loaded
TorFlow simulation, across all transfer sizes.

Figure 5a shows that the median rate of transfer timeouts
decreases by 100% in all FlashFlow simulations, compared
to median transfer failure rates of 5%, 10%, and 23% for
TorFlow in the 100%-, 115%-, and 130%-loaded simulations,
respectively. Almost no timeouts are recorded by clients when
they build circuits using the FlashFlow weights, indicating that
load in the network is much more balanced and that network
bottlenecks that were present under the TorFlow weights have
been reduced or eliminated. Fewer timeouts for Tor clients
will result in a less frustrating user experience.

Finally, Figure 5b provides further evidence that the Flash-
Flow weights result in a more balanced network capable of
handling additional traffic load. Increasing client-traffic load
by 15% and 30% results in a 15% and 29% increase in the
median Tor throughput (summed over all relays) in FlashFlow
as expected, indicating that the network is able to process
the additional load without a significant increase in network
congestion. However, increasing client-traffic load by 15% and
30% results in only a 12% and 18% increase in TorFlow,
respectively, indicating that the additional load and resulting
increase in network congestion causes a corresponding reduc-
tion in attainable inter-relay TCP connection throughput.

VII. RELATED WORK

Load Balancing in Tor: Several systems for load balancing in
Tor have been proposed. Load-balancing systems produce the
relay weights that clients use to select paths, and in some cases
the relay capacities can also be determined. A comparison
of these systems appears in Table II. It shows the server
bandwidth as currently deployed (for TorFlow) or assumed to
be deployed (for the rest), the demonstrated success factor of a
weight-inflation attack, if the system provides capacity values
in addition to weights for load balancing, and how long it
takes to produce weights for the entire network. We observe
that for some increase in required server bandwidth, FlashFlow
provides increased security and speed, and it can be used for
capacity estimates as well as load balancing.

The Tor network uses TorFlow [28] to estimate relays’
capacities and assign weights accordingly. We discuss TorFlow
in § II. TorFlow is vulnerable to attacks [10, 23, 34], the most
straightforward of which is that a malicious relay can falsely
report very high bandwidth information in its descriptor [10],
increasing its final weight regardless of its performance mea-
surements. Such attacks have been demonstrated to increase
the weight of a Tor relay by 89× [34] to 177× [23]. Data
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Fig. 4: Performance results when using TorFlow and FlashFlow weights in Shadow simulations with normal (100%) and extra (115%, 130%)
traffic load. Shown is the CDF over the time to first and last byte of 50 KiB, 1 MiB, and 5 MiB transfers by performance benchmark clients.
The CDFs are plotted with a logarithmic y-axes to highlight the long-tail performance as a measure of the impact on usability. Our results
demonstrate that FlashFlow outperforms TorFlow at all load levels due to more accurate load balancing.
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Fig. 5: Performance results when using TorFlow and FlashFlow
weights in Shadow simulations with normal (100%) and extra (115%,
130%) traffic load. (a) The fraction of benchmark client transfers
that failed (timed out) is usually 0 for FlashFlow but increases with
the extra traffic load in TorFlow. (b) The Tor network throughput
(for every second, sum of relays’ Tor throughput) increases roughly
linearly with the traffic load for FlashFlow, but reaches a ceiling in
TorFlow due to high utilization of links that become bottlenecks due
to improperly balanced load.

from TorFlow’s BWAuths [2, 30] indicate that a single 1 Gbps
scanner takes at least 2 days to measure the entire network.

SmarTor [9] decentralizes the operation of the BWAuths
using a blockchain and trusted execution environments. Like
TorFlow, it measures relay capacity by downloading a file
through the relay. It thus remains vulnerable to bandwidth-
inflation attacks demonstrated against TorFlow. We do not
include SmarTor in Table II because its contributions over
TorFlow are not to the measurement technique itself. Con-
sequently, its measurement attributes can be assumed to be
similar to that of TorFlow. Simple Bandwidth Scanner [25] is a
more easily maintained replacement for TorFlow that produces
the same results as TorFlow and does not address any of its
fundamental weaknesses, thus we do not include it either.

EigenSpeed [32] uses a peer-measurement approach in
which every relay records the average per-stream throughput
with every other relay and reports this vector to the Tor

TABLE II: Comparison of Tor load-balancing systems

Server
BW

Attack
Advantage

Capacity
Values? Speed

TorFlow† 1 Gbit/s 177× G# 2 days
EigenSpeed 0‡ 21.5×� # 1 day
PeerFlow 0‡ 10×� G# 14 days+
FlashFlow 3 Gbit/s 1.33×  5 hours

? Values provided ( ), can be inferred (G#), or unavailable (#).
† Attributes apply also to SmarTor and Simple Bandwidth Scanner.
‡ Relays measure each other using existing client traffic.
�With 20% trusted relays (by number or weight).
+ Time to measure largest 96.8% of relays.

DirAuths. The DirAuths combine the vectors into a matrix and
compute the eigenvector of that matrix as the relay weights.
This computation is done iteratively and is initialized with the
weights of trusted relays. During and after the computation,
relays can be marked as malicious due to atypical changes in
or unusual final values of their weights, and these relays are
effectively removed from the network. EigenSpeed observa-
tions are per-flow throughputs rather than total relay capacity.
EigenSpeed is vulnerable to several attacks [23], including a
Sybil attack, an “increase framing attack”, and an “targeted
liar attack”. In the last attack, malicious relays can inflate
their total weight to 7.4–28.1 times the weight they deserve,
depending on the number of trusted relays.

In PeerFlow [23], relays periodically report to the DirAuths
the total number of bytes they exchange with each other. The
DirAuths then securely aggregate the traffic data to produce
relay weights. In the process of determining weights, PeerFlow
produces lower bounds on relay capacities that can be used as
capacity estimates. PeerFlow requires a fraction τ of relay
weight that is trusted, and the adversary can obtain weights
for his relays inflated by a factor of 2/τ . If τ = 0, then a
sufficiently large adversary (i.e. relative weight above 4%) can
eventually get an arbitrarily large relative weight. PeerFlow
also limits how quickly a malicious relay’s weight can increase
from one measurement period to the next. Based on the
suggested parameters, a malicious relay can inflate its claimed
capacity by a factor of 4.5 (see [23, Theorem 1]).
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Compared to these systems, FlashFlow has much better pro-
tection against weight inflation in both the short and long term
as it has an inflation factor of 1.33 at all times. It also allows
the entire network to be measured in hours rather than days.
FlashFlow requires higher measurement-server bandwidth than
other systems, but it is still not high (3 Gbit/s), especially
compared to total Tor network capacity (>400 Gbit/s).

We note some additional systems superseded by later work
or that do not directly produce load-balancing weights. Snader
and Borisov [33] propose a simple form of EigenSpeed’s peer
measurement that takes the median of pairwise speed observa-
tions. It uses an unweighted median and is thus vulnerable to
a Sybil attack. TightRope [13] assumes that capacity weights
already exist for the relays and then considers how to choose
paths to optimally balance load. Using differential privacy, the
current load on all relays is shared with a server that computes
a distribution for clients to use when building new circuits.
Wang et al. [36] propose Tor clients use lightweight active
measurements that use latency as an indicator for congestion,
detect congested relays, and automatically avoid using them.
Other Related Work: Speed tests such as Ookla [6] are
primarily intended for home users to test the throughput
of their devices, wireless router, or their ISP’s connection.
iPerf [3] can achieve high throughput at the transport layer
over both UDP and TCP. Prasad et al. [29] describe bandwidth-
estimation techniques, focusing on efficient techniques such
as packet pairs and trains. Feamster and Livingood discuss
the challenges of Internet throughput measurement even when
allowing the measurement to fully utilize bandwidth [17].

VIII. CONCLUSION

Tor’s load-balancing system is insecure, its capacity estima-
tion is biased, and its weights have uncontrollable variance. To
solve these problems, we present FlashFlow, which actively
measures Tor relays with limited effect on normal traffic.
We implement FlashFlow, conduct experiments, and show
it accurately, securely, and quickly measures the Tor relay
capacities. We also show that these capacities improve the
load-balancing of Tor. For a discussion of possible future work,
see Appendix C.
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APPENDIX A
CLIENT BACKGROUND TRAFFIC EXPERIMENT

As described in § V-B, we run an experiment to evaluate the
effect of FlashFlow on background client traffic. We collect
data about the traffic relayed before, during, and after a
FlashFlow measurement. We measure three values for each
second of the experiment: the total amount of forwarded traffic
as reported by the target relay (through bandwidth events from
its Tor control port), the amount of FlashFlow measurement
traffic forwarded by the relay as reported by the FlashFlow
measurer, and the amount of background traffic at the relay as
reported by it to the FlashFlow measurer.

Figure 6 shows the experiment results for a ratio of r =
0.1. We tested values of r from 0.1 to 0.5, and the other
results were qualitatively similar. In the results, the sum of the
background and measurement traffic reported by FlashFlow
is indeed equal to the total traffic reported by the relay, as
expected. Following the measurements, the relay’s throughput
immediately returns to the level it was before, demonstrating
that FlashFlow has no lingering effect on background traffic
levels. We also observe in the figure that background traffic
is limited to 25 Mbit/s, which is as expected given the total
capacity of 250 Mbit/s and r = 0.1. Note that the spike at the
beginning of the measurement is due to the Tor relay allowing
a one second burst before limiting its own throughput to 250
Mbit/s.

APPENDIX B
ERROR ANALYSIS VARIABLES

Table III summarizes the variables used in § VI-B to
compare the accuracy of FlashFlow and TorFlow.

TABLE III: Capacity and Weight Error Analysis

Symbol Definition Note Description

Cr configured true capacity for relay r
Cr measured † estimated capacity for relay r

Ĉr |1− (Cr/Cr)| † capacity error for relay r

Ĉ 1− (
∑

r Cr/
∑

r Cr) † network capacity error

Wr Cr/
∑

s Cs ideal weight for relay r
W r Cr/

∑
s Cs ‡ estimated weight for relay r

Ŵr W r/Wr weight error for relay r

Ŵ 1
2

∑
r |W r −Wr| network weight error

† Undefined for TorFlow since it does not measure capacity.
‡ Defined as “measured” for TorFlow (i.e., it is not derived from Cr).

APPENDIX C
FUTURE WORK

Our results show that FlashFlow could be used today to
improve Tor’s performance and resource estimates. Further-
more, FlashFlow could be used as a secure basis for incor-
porating additional dynamic performance measurements. Such
measurements, such as per-relay network and CPU utilization,
could provide information about available (rather than total)
capacity that may further improve Tor’s load balancing. The
FlashFlow measurements would be used as a starting weight,
and then the weights would only be reduced, depending on
the dynamic measurements. FlashFlow would thus securely
limit the weight of any relay while allowing for improved
performance via adjustments based on insecure dynamic mea-
surements, such as self-measurements.

A challenge for future work is accurate measurement of
co-resident relays, that is, multiple relays running on the
same host machine. Neither TorFlow nor FlashFlow offers
approaches to detect such relays or adjust the correspond-
ing measurement results. Potential options for detecting co-
resident relays include a manual configuration option that
honest relay operators can set to disclose a family of co-
resident relays, and an automatic heuristic detection algorithm
based on IP address or ASN. Core Tor itself considers each
relay to have a single maximum capacity, an obviously untrue
assumption considering the difference in communicating with
a relay in the same data center versus on another continent.
Because FlashFlow supports running a geographically diverse
team of measurers, it handles this reality better than TorFlow,
but future work could include more intelligent weighting that
includes additional non-node properties.
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