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ABSTRACT
Tor is a tool for Internet privacy with millions of daily users. The
Tor system benefits in many ways from information gathered about
the operation of its network. Measurements guide operators in
diagnosing problems, direct the efforts of developers, educate users
about the level of privacy they obtain, and inform policymakers
about Tor’s impact. However, data collection and reporting can
degrade user privacy, contradicting Tor’s goals. Existing approaches
to measuring Tor have limited capabilities and security weaknesses.

We present Stormy, a general-purpose, privacy-preserving mea-
surement system that overcomes these limitations. Stormy uses
secure multiparty computation (MPC) to compute any function of
the observations made by Tor relays, while keeping those observa-
tions secret. Stormy makes use of existing efficient MPC protocols
that are secure in the malicious model, and in addition it includes
a novel input-sharing protocol that is secure, efficient, and fault
tolerant. The protocol is non-interactive, which is consistent with
how relays currently submit measurements, and it allows the relays
to go offline after input submission, even while ensuring that an
honest relay will not have its input excluded or modified. The input-
sharing protocol is compatible with MPC protocols computing on
authenticated values and may be of independent interest.

We show how Stormy can be deployed in two realistic models:
(1) run primarily by a small set of dedicated authorities, or (2) run
decentralized across the relays in the Tor network. Stormy scales
efficiently to Tor’s thousands of relays, tolerates network churn,
and provides security depending only on either Tor’s existing trust
assumption that at least one authority is honest (in the first model)
or the existing assumption that a large fraction of relay bandwidth
is honest (in the second model).

We demonstrate how to use the system to compute two broadly-
applicable statistics: the median of relay inputs and the cardinality
of set-union across relays. We implement Stormy and experimen-
tally evaluate system performance. When Stormy is run among
authorities we can perform 151 median computations or 533 set-
union cardinalities over 7,000 relay inputs in a single day. When
run among the relays themselves, Stormy can perform 36 median
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computations or 134 set union cardinalities per day. Thus, both
deployments enable non-trivial analytics to be securely computed
in the Tor network.
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1 INTRODUCTION
The Tor network [26] is perhaps the most popular tool for private
and open communication on the Internet. As of 2018-03-31, Tor has
an estimated two million daily users from around the world, and
its almost 7,000 relays forward over 100 Gbps of traffic [5]. Tor also
protects the privacy and integrity of over 60,000 onion services,
which benefit from Tor’s anonymity, end-to-end encryption, and
secure name lookup. Statistics such as these provide some insight
into how Tor is being used and how well it is performing, which
guides software developers in improving Tor, informs policymakers
about Tor’s social impact, and helps users understand who else is
using Tor and thus what kind of anonymity it provides. However,
gathering such statistics conflicts to some extent with Tor’s goal of
providing privacy to its users. As a result, Tor collects relatively little
data about itself, and it protects what it does collect by aggregating
it and limiting its accuracy. This decision has left Tor unable to
quickly determine when it is under attack [13, 44], how its traffic is
being blocked or degraded [50, 69], and for what purposes Tor is
being used [8, 12, 42, 54].

Several recent tools have been developed to allow Tor to gather
network statistics while maintaining individual user privacy [30,
31, 42, 56]. These tools apply secure aggregation and differential
privacy to produce statistics in a privacy-preserving way. The func-
tionality of these tools is limited, however, which makes them un-
suitable for many useful classes of measurements, such as statistics
robust to outliers and non-linear data-sketching techniques.
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We present a system that provides fully-general distributed mea-
surement and monitoring on Tor by making use of secure multi-
party computation (MPC). This system provides Tor with tools to
intentionally choose the level of network transparency that is most
consistent with its goal of providing online privacy and freedom.

To make sure that our system is compatible with Tor, we aim to
rely only on security assumptions that are inherent in the secure
use of Tor. Specifically, we consider two different deployment mod-
els each relying on a different, standard trust assumption in the
Tor network. The first deployment model we consider, the Author-
ity Model, considers running the MPC protocol among a small
number of dedicated authorities. In this model, we only assume
that at least one of the authorities is honest, a standard assump-
tion for directory authorities in Tor. This model allows us to show
the performance that can be achieved under a strong, but stan-
dard trust assumption for Tor. The second deployment model, the
Relay Model, looks to relax this trust assumption to the minimal
requirement that a reasonable fraction (e.g., 75%) of Tor’s total band-
width capacity is controlled by honest relays. In this deployment
model we execute our MPC protocols directly over nearly 7,000
relays while aiming to maximize the throughput of the MPC.

This second deployment model required the development of new
MPC protocols, specialized to large numbers of parties, and rely-
ing on an honest fraction of bandwidth, as opposed to the usual
assumption of an honest number of parties. While the field of MPC
has seen tremendous progress in the last decade, this work marks
the first attempt to tackle the practical challenges that arise in a
secure computation involving thousands of parties. While there is
a long line of work studying how to handle larger computations
from a theoretical perspective [20, 25, 35, 36, 63, 72], mainly relying
on various committee-election procedures, this work does not con-
sider several realistic concerns about node churn, bandwidth, and
memory that we address in our work. Moreover, the largest MPC
experiment performed to date [68] involves 128 parties. However,
the Tor network at the end of March 2018 consisted of almost 7,000
relays, and that number continues to grow.

One major practical challenge we address is the uneven distri-
bution of bandwidth. When dealing with 7,000 independent par-
ties in a globally-distributed system, inevitably, not all parties will
have equal resources. To deal with this issue, we show a simple
way to elect committees of parties that ensures low communi-
cation cost while also guaranteeing high bandwidth utilization,
even when participants have highly varying bandwidth allocations
(Section 4.1). Specifically, we rely on a fairly simple observation.
Many MPC protocols can be divided into offline and online phases
[10, 15, 22, 23, 49, 68]. The offline phase requires quadratic com-
munication, but it is data independent, and can be performed in
parallel. So, instead of using a single committee, as done by prior
work, we assign each party to multiple committees proportional
to the amount of bandwidth that they have, ensuring that parties
with higher bandwidth are not limited by the reduced bandwidth
of smaller parties.

While the above techniques should find application in other
large-scale MPC implementations, assigning parties to multiple
committees also provides an important security benefit in the con-
text of Tor. Tor’s trust assumptions are different than those typically
made for MPC protocols: its security fundamentally requires that

a large fraction of bandwidth is controlled by honest parties. Our
committee-election procedure provides security given only this
trust assumption, and in particular does not require that a majority
of relays are honest. Electing committee members with probability
proportional to their bandwidth serves the dual purpose of allowing
us to reason that even small committees must contain an honest
party, despite the fact that a majority of relays may be malicious.

In addition, to make our protocols better suited to deployment in
the Tor network, we develop new techniques for offline preprocess-
ing and input sharing to make our protocols more resilient against
party churn and malicious behavior. In particular, we allow some
committees to fail during the preprocessing without interrupting
the overall protocol execution. This is not necessary in prior work
when only a single committee is elected, but becomes a requirement
as we aim to better utilize bandwidth. Additionally, we achieve the
following, seemingly contradictory properties for input providers
using an accountable input protocol: (1) a malicious member of
the committee receiving the inputs cannot exclude the input of
an honest party, and (2) a malicious input party that is not on the
committee cannot cause the secure computation to abort. These
properties together allow statistics to be computed despite missing
or malformed inputs without allowing the adversary to degrade
privacy by selectively excluding all but a subset of targeted inputs.

We have implemented our protocol and experimentally demon-
strate capabilities that exceed the limitations of existing proposals
and Tor’s current measurement methods. First, we show an exam-
ple of using robust statistics by computing the median of the relays’
inputs. This statistic tolerates outliers and thus prevents malicious
Tor relays from manipulating measurement outcomes through spu-
rious inputs. It also doesn’t require us to know in advance what
input values are reasonable, as in prior work using input valida-
tion [21]. Such robust aggregate statistics provide privacy while
also providing outputs that can be relied on for network-critical
operation, such as measuring bandwidth capacity [45].

We also demonstrate that Stormy can be used to compute ef-
ficient statistics based on sketches. These computations are not
necessarily robust, but their space efficiency enables the collection
of a variety of useful network statistics. We consider the count dis-
tinct computation and show how to count unique items across the
entire network with exponentially less communication and com-
putation than is typically required by protocols for private set
intersection or union [31, 51, 61]. This design supports accurately
counting distinct items up to the billions, allowing Tor to detect
how many unique users it has, how many distinct Web domains
its users visit, and how many of its onion services are visited at
least once. An analysis of our design shows that both the median
and count-distinct computations can be performed from dozens to
hundreds of times per day, enabling Tor to collect and report these
new statistics quickly and with regularity.

To summarize our contributions: (1) we describe two deployment
models to incorporate MPC into the Tor network based only on
standard Tor assumptions; (2) we develop techniques for provid-
ing input and offline processing that are resilient to party failures
and prevent omission of inputs; (3) we adapt MPC protocols for
non-uniform trust and bandwidth; (4) we describe how to securely
compute a median and sketch-based unique count, which is not
possible with current Tor-measurement systems; and (5) we provide



experimental results showing practical MPC performance when
run over both a small set of authorities and the entire Tor network.

2 TOR BACKGROUND
Tor [26] anonymizes Internet traffic by sending it through its net-
work of relays. The relays are run by independent volunteers who
donate the computational and network resources [5]. A Tor user
creates an anonymized TCP connection through Tor by sending a
connection request to a locally-run Tor client. The client builds a
circuit through a sequence of relays, and the desired connection can
be placed onto that circuit. Tor circuits generally consist of three
relays: a guard,middle, and exit. Relays are flagged for suitability as
guards or exits based on their resources and willingness to connect
outside the network, and then, for each position in a circuit, a relay
is chosen from among those suitable with probability proportional
to a network-determined weight [6]. That weight is intended to
be proportional to the relay’s bandwidth, largely to balance the
traffic load and improve network performance. However, doing so
also provides security: it requires an adversary to provide costly
bandwidth to the network in order for its relays to achieve positions
in which they can attack clients.

Tor users are vulnerable to an adversary that controls a signifi-
cant fraction of the Tor network. For such an adversary, there is a
non-trivial chance that a client’s circuit is composed entirely of ma-
licious relays, in which case the adversary can easily deanonymize
the connection. In practice, however, the adversary need only con-
trol a circuit’s first and last hop (i.e. the guard and exit) because he
can identify that both are part of the same circuit by correlating
traffic patterns [9, 17]. Controlling any one position harms client
security as well, as a malicious guard can, for example, perform
website fingerprinting [67] and selective denial-of-service [13], a
malicious middle can performwebsite fingerprinting [43] and guard
discovery [39], and a malicious exit can perform man-in-the-middle
attacks [69]. Thus, for Tor to be secure it must be that no adversary
controls a large fraction of the relay weight in any position. While
no sharp threshold for security exists, an adversary that controlled,
say, 25% of Tor’s bandwidth, would effectively have compromised
the network, as under current rates of churn, a quarter of clients
could expect to choose a compromised guard immediately, and the
rest within a fewmonths; given a compromised guard, the client can
expect to choose a compromised exit (and thus be deanonymized via
a correlation attack) within hours [29, 47]. Tor’s threat model is thus
limited to an adversary controlling a small fraction of bandwidth
(we will assume < 25%).

The state of the Tor network is maintained by the Directory
Authorities (DirAuths) [4]. There are currently nine DirAuths that
vote to determine a network consensus. A consensus is produced
every hour and contains, among other things, a list of the relays
with their bandwidths and position flags. DirAuths also store relay
descriptors that contain other data needed by clients, such as the
exits’ connection policies. Every client downloads a copy of the
consensus every hour and downloads sufficiently-recent descriptors
(currently within 18 hours), which it uses to choose relays when
constructing circuits. Most entries in the consensus, including the
relays and their properties, must be voted for by a majority of the
DirAuths, and so Tor relies to a great extent on a trust assumption
that a majority of DirAuths are honest. The DirAuths also generate

a random value to put into the consensus using a commit-reveal
protocol [7]. This value is currently only used to affect how Tor’s
internal name-resolution operates.

To be listed in the Tor consensus, a relay must directly com-
municate with the nine DirAuths and an additional set of Band-
width Authorities who determine the relay’s bandwidth and con-
sensus weight. Authorities are geographically distributed around
the world in many different networks; consequently, relays must be
well-connected in the Internet in order to communicate with each
authority. Moreover, the Tor protocol assumes that each relay can
communicate with all other relays in a fully-connected network.

The Tor network consensus from 2018-10-01 includes 6,331 re-
lays. On that day, Tor relays sent on average about 125 Gbps of
traffic in aggregate on behalf of an estimated 2 million users. We
observe that the distribution of Tor relay weight is skewed towards
high-bandwidth nodes. The largest 25% of relays by weight have
78% of the total weight. The minimum non-zero advertised band-
width is 0.02 Mbps, the median is 12.44 Mbps, and the maximum is
1,397 Mbps. The total advertised bandwidth is 275 Gbps. Much of
Tor’s bandwidth goes unused: the relays’ bandwidth histories show
that they actually relayed only 125.0 Gbps of traffic on average, and
so only 45.5% of the advertised bandwidth is used. Moreover, we
observe that 95% of Tor relays (by bandwidth) have at least 25%
spare capacity (see the technical report [65] for more detail). This
behavior is consistent over time, as we observe that for every day
in 2018-10 at most 48.3% of Tor’s advertised bandwidth is used.

3 SYSTEM MODELS
3.1 Deployment Models
Stormy, our system enabling Tor to securely measure and monitor
itself, can be deployed in two models: (1) the Authority Model

(AuthMode) in which a small set of authorities (e.g. the Direc-
tory Authorities) is dedicated to receiving inputs and performing
the secure computation, and (2) the Relay Model (RelMode) in
which Tor relays themselves are used to perform the secure com-
putation. The advantage of the Authority Model is efficiency. The
Relay Model has the advantage of not requiring bandwidth beyond
that provided already by Tor. Additionally, the Relay Model will
only use Tor’s existing trust assumption that a large fraction of
relays by weight is honest. In contrast, while the Directory Au-
thorities are already entrusted with significant power, using them
as computation parties would give them a new ability to covertly
learn private information about the past. The Relay Model is also
more consistent with designs that decentralize the functions of
the DirAuths [55, 58, 59]. These reasons may justify using the Re-
lay Model of Stormy despite its relative inefficiency.

3.2 Network and Adversary Model
We model the communication network and its hosts based on Tor
as it currently exists. We assume the hosts participating in the
protocols, the hosts’ public keys, and the hosts’ relay weights are
publicly known and agreed upon (all this information is in the Tor
consensus). We further assume that hosts communicate directly
over confidential and authenticated channels, and that maximum
delays between hosts on these channels are known.

The adversary we consider is malicious (i.e. active) and in control
of some Tor hosts. In the Authority Model, we assume at least one



of the authorities is honest. This is similar to (and weaker than)
the existing assumption of an honest majority of DirAuths. In the
Relay Model, we instead assume that the adversary controls relays
with at most 25% of total relay weight. As discussed in Section 2,
this is a commonly-used limit on a reasonable Tor adversary, as
it represents a basic security assumption in Tor. Also, without
it, many of the inputs to Stormy would be observed before any
secure computation even began. Note that we do not assume that
a majority of relays (by number) is honest because this is neither
necessary nor sufficient for the security of Tor itself. We allow the
adversary to passively observe all of the communication channels
between hosts (a threat that Tor itself is actually not secure against).

4 SECURE COMPUTATION PROTOCOLS
Our computation consists of several stages divided between offline
and online phases. The offline phase includes those stages that can
be completed before the inputs are known. Once the inputs are
available, the online phase can begin. We describe the stages in the
Relay Model, as the Authority Modelis a special case in which a
single committee consisting of the authorities runs all components.

First, committees are elected to run different components of
the system (Section 4.1). We sample large enough committees to
ensure (with all but negligible probability) that each committee
has at least one honest participant. Next, a designated committee
generates secret-shared, authenticated, random bits, while the rest
of the committees each run a protocol to generate secret-shared,
authenticated, AND triples. These bits and triples will be used dur-
ing the online phase (Section 4.2). An important feature of this
process is that a triple-generating committee can abort (e.g., due
to host failure) without requiring the other committees to abort.
After enough bits and triples have been generated, the online phase
begins when the relays’ inputs are available. To start it, a desig-
nated committee executes the input-sharing protocol with each
relay, receiving encoded inputs (Section 4.3). An important and
novel feature of this protocol is that it does not allow a malicious
input party to cause the overall computation to fail, while also
preventing malicious committee members from excluding honest
inputs. Finally, the same committee runs the computation protocol
to evaluate a Boolean circuit on the supplied inputs (Section 4.4).

We will show that each protocol run by a committee is secure
against a malicious adversary as long as at least one committee
member is honest. Moreover, we prove in the Relay Model that
the composed system is secure against an adversary that controls
a fraction f < 1 of the total bandwidth. Composed security in the
Authority Model holds following similar arguments assuming at
least one authority is honest.

Our protocols follow the paradigm for secure computation of
computing on authenticated shares. In the following protocol de-
scriptions, we denote the global MAC key by ∆. We denote a value
v that is additively secret-shared among a set of parties C as [v]C ;
v(i) denotes Pi ’s share of [v]C for Pi ∈ C . We indicate a valuev and
its MAC µ = ∆v that have been secret-shared among C as [[v]]C
(i.e. [[v]]C = ([v]C , [µ]C )). We often omit the subscript when the
set C is clear from context. We denote by [[x]](i) the shares party
Pi has of x and its MAC µ, that is, [[x]](i) =

(
x (i), µ(i)

)
. We use H to

denote a cryptographic hash function. We use x ← S to indicate

that x is chosen uniformly at random from S . Finally, we let λ de-
note a statistical security parameter and κ denote a computational
security parameter. These are set to 40 and 256 respectively in our
experiments.

4.1 Committee Election
We describe how committees are elected in the Relay Model.
4.1.1 Generating Randomness. All parties begin by agreeing on a
random string, which they will use to locally run the committee-
assignment algorithm described below. To securely obtain unbiased
random bits for committee election, we use the randomness already
generated by the Directory Authorities and included in the consen-
suses [7]. The security of this randomness relies on the assumption
that a majority of the DirAuths are honest. Using this assumption
for secure computation on network data does increase the conse-
quences of violating it, including in particular a new power to reveal
information about the activity in the network from before the point
of compromise. To avoid relying on the randomness generated
by the Directory Authorities, the relays themselves may perform
commit-reveal randomness generation using a consensus protocol
suitable for large distributed systems (i.e. with low-communication
complexity and responsiveness to latency [57, 71]).
4.1.2 Committee Assignments. Weuse the securely-generated shared
randomness to elect a set of committees to perform the secure com-
putation. Two types of committees are used: (1) Triple Committees
(TCs) that generate AND triples during the offline phase, and (2)
Computation Committees (CCs) that generate authenticated ran-
dom bits offline and perform the online computation. All relays
know the committees because they are generated locally from the
shared randomness and using the same consensus document (see
Section 5 for further discussion). The committees are used for all
computations within a given time period, after which new commit-
tees are selected using fresh shared randomness.

We wish to choose committees such that, with probability at
least 1−2−λ , all of them have at least one honest member. To accom-
plish this, we fix a committee size c and then select each committee
independently by choosing c members at random (with replace-
ment) with probability proportional to their consensus weights.
Since we sample committee members with replacement, parties
may be selected onto multiple committees, and the parties with
more bandwidth will be assigned to more committees. We sample
a large number mTC of Triple Committees, many of which will
be used in parallel to exploit Tor’s available bandwidth. We also
sample a smaller number mCC of Computation Committees, of
which we will only use one at a time, but keep several in reserve to
recover from node failures. For now, we focus on the case where
only one Computation Committee is used; see Section 5 for how
multiple committees are used. Letm = mTC +mCC. Then, using
Tor’s security assumption that the adversary controls at most a
small fraction f of the network bandwidth, we have the following
claim.

Claim 1. If m committees are sampled, and each is of size c =
⌈(λ+ log2(m))/ log2(1/f )⌉, then the probability that some committee
contains c malicious parties is at most 2−λ .

Proof. Since each party is sampled independently, the proba-
bility that a committee of size c is entirely malicious is f c . Using



Protocol ΠPre

Notation:
• Let CC be the Computation Committee.
• Let TC1, . . . , TCmTC be the Triple Committees.
Initialize:
1. Generate ∆ and ∆j : Each Pi ∈ CC chooses ∆(i ) ← F2λ ,

defining global MAC key ∆ =
∑c
i=1 ∆

(i ). Each TCj similarly
generates ∆j ← F2κ .

2. Transfer ∆: Each party Pi ∈ CC does the following:
a. For each TCj and each Pk ∈ TCj , choose ∆(i )(k ) ← F2λ

s.t. for all j ,
∑
Pk ∈TCj ∆

(i )(k ) = ∆(i ).
b. Send ∆(i )(k ) to Pk . Let ∆(k ) =

∑
Pi ∈CC ∆(i )(k ) be the

share of the MAC key ∆ held by Pk ∈ TCj .
Random(F, b):
1. Generate random bits: If F = F2, each Pi ∈ CC calls

ΠaShare
(
∆(i ), b

)
and aborts if this call aborts. CC receives

bits ([[r1]] . . . [[rb ]]) as output.
2. Generate random F2λ elements: If F = F2λ , each Pi ∈ CC

calls ΠaShare
(
∆(i ), bλ

)
and aborts if this call aborts. CC re-

ceives bits ([[r1]] . . . [[rbλ ]]) as output and combines each
consecutive λ bits to produce F2λ elements ([[s1]] . . . [[sb ]]).

Triples(ℓ): (Let TCj be the TC calling the protocol.)
1. Generate triples: Each Pi ∈ TCj runs ΠaAND

(
∆
(i )
j , ℓ

)
, and

then, for each value in the resulting triples, Pi executes
ΠMACSwitch with ∆

(i )
j and ∆(i ) and produces triple shares(

[[xk ]](i ), [[yk ]](i ), [[zk ]](i )
)
, 1 ≤ k ≤ ℓ. If the call to ΠaAND

aborts, Pi informs each Pj ∈ CC and aborts.
2. Transfer triples: For each triple component [[w ]](i ) held by a

Pi ∈ TCj :
a. Pi chooses s ih ← F2κ ,1 ≤ h ≤ c − 1, sends zi =
[[w ]](i )

⊕c−1
h=1 PRG(s ih ) to Qi ∈ CC, and sends each s ih

to a distinct remaining Pk ∈ CC.
b. Each Pk ∈ CC computes [[w ]](k ) =

zk
⊕

h,k PRG(shk ).
3. Check triples: Each Pi ∈ CC calls ΠMACCheck with ∆ and the

set of all triple component shares [[w ]](i ). If the call aborts,
Pi informs each Pk ∈ TCj , causing each Pk ∈ TCj to abort,
and Pi rejects this and future triple transfers from TCj .

Figure 1: Protocols for offline preprocessing.

a union bound over m committees, we require that mf c ≤ 2−λ .
Solving for c yields the claim.

4.2 Offline Preprocessing Protocols
The offline preprocessing protocols provide authenticated secret-
shared random bits and AND triples. A random bit is needed for
each input bit in the circuit, and a triple is needed for each AND gate
in the circuit. Therefore, the preprocessing protocols can provide
sufficient bits and triples for the online computation knowing only
upper bounds on the number of input bits and the number of AND
gates in the circuit.

The preprocessing protocols make use of the ΠaShare and ΠaAND
protocols of Wang et al. (Figures 15 and 18 of [68], respectively).
These protocols produce pairwise authenticated shared bits. We
denote a bit x authenticated and shared in this way as ⟨x⟩C,∆, where

C is the group holding the shares, and ∆ ∈ F2κ is the MAC key used
for authentication. We omit the C or ∆ subscript when it is clear
from the context. Under the pairwise authentication, the bit value
is shared as [x]C , and, for each Pi , Pj , Pi holds an authentication
tag Mj [x

(i)] ∈ F2κ on its share x (i) under a key Kj [x
(i)] ∈ F2κ

held by Pj . The key is uniformly random (i.e. Kj [x
(i)] ← F2κ ), and

the authentication tag is produced such thatMj [x
(i)] = Kj [x

(i)] +

x (i)∆(j). We denote the share of ⟨x⟩ held by Pi as ⟨x⟩(i), that is,
⟨x⟩(i) =

(
x (i),

{
Mj [x

(i)],Ki [x
(j)]

}
j,i

)
. A pairwise-authenticated

value ⟨x⟩ can easily be turned into a globally-authenticated value
[[x]] under the first λ bits of ∆. To do so, each party Pi sets its global
MAC share µ(i) to the first λ bits of x (i)∆(i) +

∑
j,i

(
Mj [x

(i)] +

Ki [x
(j)]

)
.

The preprocessing protocols are given as subprotocols of the com-
bined preprocessing protocol ΠPre, shown in Figure 1. ΠPre is run
by the Computation Committee (CC) and the Triple Committees
(TC1, . . . , TCmTC ). We will show that ΠPre realizes the functional-
ity FPre (Figure 6 in Appendix A). The ΠPre subprotocols work as
follows:

4.2.1 Initialize. CC initially generates the global MAC key ∆ and
distributes shares of it to each TCi .

4.2.2 Random. This protocol is run by the CC to generate secret-
shared, random, authenticated elements in F2 or F2λ . It uses ΠaShare
to generate random bits. To instead generate an element of F2λ ,
it uses the technique of Keller et al. [49] to combine λ random
bits. The protocol takes as input a field F and the number b of
random field elements to produce. It outputs to CC the secret-
shared authenticated random field elements ([[r1]]CC, . . . , [[rb ]]CC).

4.2.3 Triples. The protocol is run by CC and a TCj . It takes as
input the number ℓ of triples to produce. It outputs to CC ℓ triples
([[x]]CC, [[y]]CC, [[z]]CC), where x ,y, z, ∈ F2 and x ∧y = z. TCj runs
the ΠaAND protocol to generate triples. However, our use of that
protocol raises an issue that we must address. Specifically, ΠaAND
allows a selective failure attack wherein A can learn a few bits
of the MAC key ∆. Wang et al. can deal with this by using the
randomness extraction technique of Nielsen et al. [60]. However,
the situation is more challenging for us because we need to allow for
offline committees to abort without halting the overall computation.
If they all use the same global ∆, then each offline committee could
attempt to learn some bits of ∆, and even if some are detected, the
computation would proceed despite a large leakage of ∆ overall.

We make an important addition to ΠaAND to allow a triple com-
mittee to abort without leaking any bits of the global MAC key ∆,
thus allowing the other committees to continue. We achieve this by
first having each TCj generate authenticated triples using its own
MAC key ∆j . Then each committee calls ΠMACSwitch (Figure 2) on
each triple to change the authentication tags to be under the global
∆. This protocol uses the MAC switch technique of Wang et al. [68]
(Step 5, Figure 8 of [68]). Because different keys are used by each
committee, the leakage cannot accumulate across committees, and
so the randomness extraction in ΠaAND prevents leaking any bits
of ∆. If the ΠaAND call aborts, each member of TCj informs each
member of CC, and then TCj aborts.



Protocol ΠMACSwitch

Notation:
• Let C = {P1, . . . , Pc } be the committee executing the pro-

tocol.
• [∆1]C ∈ F2κ is input as the current MAC key.
• [∆2]C ∈ F2λ is input as the desired MAC key.
• ⟨x ⟩C,∆1 , x ∈ F2, is input as the value on which to perform

the MAC switch.
Protocol:
1. For each Pi , Pj ∈ C , Pi , Pj :

a. Pi computes K
′

i [x
(j )] = H

(
Ki [x

(j )]
)
and Ui, j =

H
(
Ki [x

(j )] ⊕ ∆
(i )
1
)
⊕ K

′

i [x
(j )] ⊕ ∆

(i )
2 .

b. Pi sends Ui, j to Pj .
2. Pj computes M′i [x

(j )] = x (j )Ui, j ⊕ H
(
Mi [x

(j )]
)
.

3. The output to Pi ∈ C is ⟨x ⟩(i )C,∆2
=(

x (i ),
{
K
′

i [x
(j )], M

′

j [x
(i )]

}
j,i

)
.

Figure 2: MAC switching protocol.

After TCj generates the triples, it transfers them to CC to use
during the online computation. Each member Pi ∈ TCj secret-
shares [[w]](i) toCC, wherew is a triple component, using c−1 seeds
to a pseudorandom generator (PRG) to minimize communication.
That is, Pi samples c − 1 PRG seeds, si1, . . . s

i
c−1, and sends each to

a different member of CC\Qi , whereQi ∈ CC is the ith member of
CC. To Qi , Pi sends [[w]](i)

⊕c−1
h=1 PRG(s

i
h ). Having each Pi ∈ TC

send this to a different Qi ∈ CC provides load balancing. After CC
has received the triples from TCj , it must ensure that they are well
formed so that a malicious member of TCj can’t cause the later
online computation to abort. CC executes a batch MAC check on all
triple components using ΠMACCheck (Figure 3). This MAC-checking
procedure is taken from Keller et al. [49]. If the MAC check fails,
CC informs TCj , TCj aborts, and CC rejects the triple batch and
any further batches from TCj .

4.2.4 Security. Theorem 4.1 shows that ΠPre securely realizes FPre
(Figure 6 in Appendix A) as long as there exists at least one honest
member in every committee. The proof appears in the technical
report [65].

Theorem 4.1. ΠPre realizes FPre in the standalone model with
random oracleH against a static, malicious adversary simultaneously
corrupting up to c − 1 members of each of CC, TC1,. . ., and TCmTC

.

A consequence of Theorem 4.1 (following from the definition of
FPre) is that ΠPre can be used to obtain random authenticated bits
and triples secret-shared by CC that are unknown to the adversary
and have correct MAC tags under a global key ∆. An additional
corollary is that TCj can only cause its triple generation to be
aborted and cannot interrupt triple generation by other TCs. Fur-
thermore, ΠPre reveals no information about ∆ to the adversary.

4.2.5 Performance. The offline preprocessing protocols are the
most costly components of Stormy. Generating ℓ triples involves
an execution of a correlated oblivious transfer with errors proto-
col (Figure 19 in [48]) with every other committee member. This
protocol extends a small number of “base” 1-of-2 oblivious trans-
fers [18] (which are the only offline asymmetric-key cryptographic

Protocol ΠMACCheck

Committee C uses shared key [∆] to check the MACs of authen-
ticated secret-shared bits {[[xh ]]}bh=1:
1. C calls ΠPre.Random(F2λ , 1) to obtain authenticated F2λ el-

ement [[f ]].
2. C generates random coefficients:

a. Each Pi chooses si , ri ∈ {0, 1}κ and sends commit-
ment Comi = H (si | |ri ) to each Pj .

b. After all Comj are received, each Pi sends opening
(si | |ri ) to each Pj .

c. After obtaining all opened values, each Pi sets r =⊕
j r j and generates (д0, д1, . . . , дb ) ← PRGλ (r ),

дh ∈ F2λ for 0 ≤ h ≤ b .
3. Each Pi computes y(i ) = f (i )д0 +

∑b
h=1 x

(i )
h дh and µ (i ) =

µ (i )f д0 +
∑b
h=1 µ

(i )
xhдh , where µ

(i )
z denotes Pi ’s share of the

MAC in [[z]].
4. C performs a partial opening:

a. Each Pi sends y(i ) to a designated party P1.
b. P1 sends y =

∑c
j=1 y

(j ) to each Pi .
5. Each Pi computes ζ (i ) = µ (i ) −y∆(i ), chooses qi ∈ {0, 1}κ ,

and sends commitment Comi = H (qi | |ζ (i )) to each Pj .
6. After allComj are received, each Pi sends opening

(
qi | |ζ (i )

)
to each Pj .

7. After obtaining all opened values, each Pi sets ζ =
∑c
j=1 ζ

(j )

and aborts if ζ , 0.

Figure 3: MAC checking protocol.

operations) into a large number (ℓ) of oblivious transfers using only
symmetric key operations. However, it has high communication
costs, and with c parties, it requires that each party sends approxi-
mately 3(c−1)(κ+λ)ℓβ bits for ℓ triples, where β ≤ λ /(log2(ℓ))+1.
The Random functionality is also based on OT extension and thus
also requires relatively cheap computation, but its communication
costs for b bits are about 2(c − 1)λb and are thus significantly lower
than triple generation unless b ≫ ℓ.

4.3 Input Sharing Protocol
Another critical part of our protocol is in how inputs are provided to
the Computation Committee, CC. Specifically, our input protocol
must (1) ensure that a malicious committee member cannot modify
or exclude the input of an honest party and (2) prevent a malicious
input party from causing the computation to abort. To reduce the
amount of time input parties must be online, we also want this
protocol to be “non-interactive” in the sense that there is only
one message sent from an input party to the committee (further
interaction within the committee is allowed).

One of the challenges in achieving these properties simultane-
ously is the need for parties to prove that they did not receive a
message that should have been sent. To support such proofs, we
design the accountable message functionality FAccMsg, described in
Figure 8 (Appendix A). The functionality has send and reveal sub-
routines. The send subroutine delivers a message to the receiving
party while allowing him to prove to the other committee members
if he failed to receive a message. The reveal subroutine simply for-
wards a sent message to all committee members. We describe in the
technical report [65] how to realize FAccMsg using an encryption



scheme with verifiable decryption (e.g. El Gamal). It requires O(c)
communication, with the sender sending an encrypted message to
every committee member, each of which forwards the ciphertext
to the receiver.1

We use FAccMsg for sending point-to-point messages of both
public values and c-out-of-c additive shares. In the latter case, the
functionality looks a lot like weak verifiable secret sharing (WSS)
[62], which guarantees agreement on an honest dealer’s shared
value, and allows disagreement on whether to abort when the dealer
is malicious.2 However, there are a few important differences. We
require an additive sharing of the input (rather than, say, a Shamir
sharing), and we do not want to involve the dealer after the sending
phase. It is not clear how to achieve these properties using WSS.
Note that, because we use an additive sharing, reconstruction is
always possible, as long as everyone has received some signed
value in the field. Additionally, there are a few relaxations that
we leverage: we allow some honest parties to abort, even when
the dealer is honest (as long as they don’t blame the dealer), and
we allow disagreement on the dealer’s input value if the dealer is
malicious.

We now briefly describe the ΠInput protocol (Figure 4) making
use of FAccMsg. A functionality FInput is given in Figure 7 (Ap-
pendix A) and a proof of security for this protocol is given in the
technical report [65]. Pin sends additive shares of his masked, b-bit
input, and of the b mask values. He cannot authenticate these val-
ues, since he does not know ∆, so he instead computes part of the
MAC check protocol. Specifically, he secret-shares random coef-
ficients (χ1, . . . , χb ), and computes and sends their inner-product
with his mask values.

The committee transfers the MAC values from the pre-processed
random bits to the masked input, and then opens the shared coeffi-
cients in order to complete the MAC check on the masked input.
If the MAC check terminates without error, they know they have
validly authenticated, unmodified input. If an error is detected dur-
ing the MAC check, there are two possibilities: either the input
party sent an inner-product that was inconsistent with his mask
values and his MAC check coefficients, or some committee member
modified some of the values he received. The committee members
use the reveal subroutine of FAccMsg to verify that the masks, the
coefficients, and the inner-product are consistent; crucially, they
can do this without exposing the masked input, and so an honest
Pin is not adversely impacted.

The input protocol has different abort behavior based on which
party is controlled by the adversary. If only Pin is malicious, we
guarantee that all committee members detect this and blame Pin, so
they can exclude his input and continue. If only committee mem-
bers are malicious, some honest parties may not immediately detect
this, but none will blame Pin. We allow the protocol to continue
with a fraction of the honest parties, who will quickly abort anyway,
as at least one of their honest partners will have stopped partic-
ipating. Finally, if both the input party and committee members
1If we are willing to sacrifice the non-interactive property, the sender can send a
message directly to the receiver without accountability, saving on communication. The
receiver may then complain and ask for an execution of the accountable message pro-
tocol only when necessary. If everyone is honest, the protocol remains non-interactive.
2Because we sometimes use this functionality for sending public values, we model it
as having send and reveal subroutines, instead of share and reconstruct, which is used
in VSS and WSS.

are malicious, they can force part of the committee to blame the
input party while others blame the committee (or nobody at all).
Regardless, all committee members will terminate the protocol,
either immediately, or when detecting that others have aborted.
The proof of the next theorem appears in the technical report [65].

Theorem 4.2. ΠInput securely realizes the ideal functionalityFInput
in the standalone model against a static, malicious adversary that
can corrupt Pin and at most c − 1 out of the c parties in CC.

4.4 Online Computation Protocol
The online computation protocol is run by the Computation Com-
mittee, CC, to evaluate a Boolean circuit on inputs provided by the
relays. We use the TinyOT protocol of Burra et al. (Figure 11, [15]).
The online computation protocol ΠOnline uses the subprotocols
ΠAdd, ΠMultiply, and ΠOutput described by Burra et al. It takes as
input the circuit C to be computed and the global MAC key [∆]. Ac-
cess to the offline bits and triples is assumed as well. After running
ΠInput with each input party, CC executes ΠAdd and ΠMultiply for
each of the XOR and AND gates in C, respectively, in topologically-
sorted order. The inputs at each gate are values [[x]]CC and [[y]]CC
either obtained during input sharing or output by a previous gate
evaluation, and the gate’s output is a value [[z]]CC, where z = x ⊕ y
for an XOR gate and z = x ∧ y for an AND gate. ΠOutput takes the
values of the o output gates ([[y1]]CC, . . . , [[yo ]]CC) and either aborts
or outputs (y1, . . . ,yo ) to each member of CC. The functionality
FOnline realized by this protocol is given in Figure 9 (Appendix A),
and the following theorem follows from Burra et al. [15].

Theorem 4.3. ΠOnline securely realizes the ideal functionality
FOnline in the standalone model against a static, malicious adversary
that can corrupt at most c − 1 out of the c parties in CC.

The online computation phase is fast and inexpensive compared
to the offline preprocessing phase. It involves no asymmetric-key
operations. Evaluating XOR gates is local—no network communica-
tion occurs. Evaluating an AND gate involves sending and receiving
about two bits on average. A major cost is latency due to the round
complexity, which is determined by the circuit’s AND-gate depth.

4.5 Complete protocol
We now describe how these component protocols can be assembled
into a protocol ΠRM−MPC to securely evaluate a Boolean circuit C
in the Relay Model. The protocol in the Authority Model can be
recovered by skipping committee election and executing everything
in the single committee, and security follows in a straightforward
way from prior work. ΠRM−MPC is executed as follows:

(1) All parties run the randomness generation protocol described
in Section 4.1.1 to generate shared randomness r .

(2) Each party locally uses r to electm committees, setting the
first committee as the CC, and the rest as TCs.

(3) The CC runs FPre.Initialize to generate a global MAC key ∆.
(4) The CC runs FPre.Random to generate sufficiently many

random bits and field elements for all inputs in C.
(5) Each TCj runs FPre.Triples to generate AND triples and

outputs them to the CC. If any party in any TCj aborts, no
triples are produced, but the protocol continues.



Protocol ΠInput

Notation:
• Let C = {P1, . . . , Pc } denote the Computation Committee

holding global MAC key ∆.
• Let Pin denote the input party holding input bits x1, . . . , xb .
Subroutine Adjust([[r ]], [s]) 7→ [[s]]: (r, s ∈ F2 or r, s ∈ F2λ )

1. Let r (i ),m(i )r , and s (i ) denote Pi ’s share of r ,mr (the MAC
on r ) and s , respectively.

2. Each Pi computes d (i ) = s (i ) − r (i ). C opens d .
3. Each Pi setsm(i )s =m

(i )
r + d · ∆(i ). C now holds [[s]].

Preprocessing:
1. C calls FPre(random, F2λ , 1) to obtain authenticated, secret-

shared field element [[r0]].
2. C calls FPre(random, F2, b) to obtain authenticated, secret-

shared bits {[[rh ]]}bh=1.
Input Sharing:
1. Pin samples s0 ← F2λ , (s1, . . . , sb ) ← Fb2 , and
(χ0, . . . , χb ) ← Fb+12λ

. Pin computes y =
∑b
h=0 (χh · sh ).

2. Pin forms random sharings {[sh ]}bh=0, {[xh + sh ]}
b
h=1, and

{[χh ]}bh=0. Pin accountably sends to Pi ∈ C its shares,
and the public value y , using FAccMsg .send. If Pi receives
(abort, C) in any execution of FAccMsg, he aborts and blames
C . Otherwise, if he receives (abort, Pin) in some execution,
he excludes Pin’s input.

3. C calls Adjust([[rh ]], [sh ]) and obtains {[[sh ]]}bh=0.
4. Each Pi ∈ C opens their share of χ (i )h , for h = 0, . . . , b , by

calling FAccMsg .reveal(χ
(i )
h ).

(Here, and any other time FAccMsg .reveal is called, if a party
receives (abort, C), they abort and blame C .)

5. Each Pi computes χh =
∑c
i=1 χ

(i )
h , for h = 0, . . . , b , and

m(i ) =
∑b
h=0

(
χh ·m

(i )
h

)
, where m(i )h denotes Pi ’s MAC

share on sh .
6. C executes a MAC check:

a. Each Pi computes ζ (i ) =m(i ) − y · ∆(i ).
b. C securely opens ζ =

∑c
i=1 ζ

(i ): each Pi sends a com-
mitment Comi = H (ζ (i ) | |ri ) to all Pj ∈ C , and after
receiving all c − 1 commitments, sends the opening
(ζ (i ) | |ri ) to C .

c. If ζ , 0, C must decide to exclude or abort:
i. Each Pi echos his shares of s , {s (i )h }

b
h=0, by calling

FAccMsg .reveal(s
(i )
h ).

ii. Each Pi echos y by calling FAccMsg .reveal(y). If C
detects any inconsistency, C excludes Pin’s input.

iii. Each Pi computes sh =
∑c
i=1 s

(i )
h . If y ,∑b

h=0 (χh · sh ), C excludes Pin’s input. If not, C
aborts and blames C .

7. Each Pi echos {(x (i )h + s (i )h )}
b
h=1 by calling

FAccMsg .reveal((x
(i )
h + s

(i )
h )).

8. C locally computes [[sh ]]+ (xh + sh ) = [[xh ]] for 1 ≤ h ≤ b .

Figure 4: Protocol for input sharing.

(6) Each relay runs FInput with the CC to provide its input. If
an input relay is disqualified, his input is dropped but the
protocol continues. If a CC member aborts, the protocol
stops.

(7) The CC runs FOnline to securely evaluate the circuit C. If
any party in the CC aborts, the protocol stops.

To analyze the security of this protocol, we introduce a new
model of security for Relay Model MPC protocols (FRM−MPC)
that we believe captures the requirements for MPC protocols run
between a large number of parties. Specifically, our model builds on
the secure computation with abort and no fairness definition given
by Goldwasser and Lindell (Def. 5, [34]). This is a relaxation of
security with abort in which the adversary is allowed to specify
which honest parties abort and which ones receive output.

In our model we additionally designate a small set of parties (the
CC) such that an adversary A is only allowed to abort the func-
tionality (as described above) if CC ∩A , ∅. This is necessary in a
large-scale deployment where many more parties may participate
in the protocol, but should not be able to interrupt the computation
(either due to churn or malicious failure). Informally, the function-
ality provides security with abort against members of CC and full
security (without allowing abort) against everyone else. A formal
description of FRM−MPC is given in Figure 10 (Appendix A) and a
proof of the following theorem is given in the technical report [65].

Theorem 4.4. If m committees of size c = ⌈(λ + log2(m)) /
log2(1/f )⌉ are sampled, then ΠRM−MPC securely realizes FRM−MPC
in a standalone (FPre,FInput,FOnline)-hybrid model against a static,
malicious adversary corrupting less than an f fraction of the total
available bandwidth.

5 HANDLING PARTY CHURN
A key goal of Stormy is to be resilient to party failures as well
as malicious behavior. We now discuss how we use the protocols
described in Section 4 to achieve this. The discussion in this section
is restricted to the Relay Model.

In Stormy, time is partitioned into a series of epochs (e.g. 24 hour
periods). During an epoch, committees are elected once (when in the
Relay Model), and then many rounds of offline preprocessing and
online computation are run within the epoch. We wish to provide
security over an epoch; that is, we bound the probability that the
adversary succeeds in subverting security in committee election,
offline preprocessing, or online computations to be at most 2−λ
during an epoch. In this section, we describe how Stormy operates
over an epoch.

5.1 Committee Usage
In the Relay Model, two hours before the start of the epoch, Tor’s
DirAuths create an Epoch Document. This document is produced
and distributed using Tor’s existing consensus mechanism (Sec-
tion 2) and is an extension of the existing daily generaton of shared
randomness. Each relay downloads the Epoch Document in addi-
tion to the current consensus, and can be expected to be able to
obtain it in time as relays already must have a consenus within
two hours of the current time. The Epoch Document contains: (1)
the random string currently produced daily by Tor, and (2) a list of
relays and their consensus weights. The Epoch Document provides
a consistent view of the network for a given epoch that each relay
uses to locally determine the Triple Committees and Computation
Committees. An Epoch Document is valid for only its epoch.



During the committee-election process in the Relay Model, we
selectmTC Triple Committees andmCC Computation Committees
(see Sec. 4.1). However, we do not use all of these simultaneously; we
find subsets with good performance, and hold some committees in
reserve to replace committees that die due to churn. We consider
every committee elected in an epoch to be in one of three states:
active, inactive, and dead. Active committees are actively running a
system protocol. Inactive committees are still responsive and avail-
able for use but have not yet been made active. Dead committees
failed or aborted at some point in the epoch, and they are not used.
All committees begin the epoch as inactive, some initial subset
is made active, and, as active committees die, inactive ones may
become active to replace them.

Amain constraint on the use of TC committees is that we wish to
limit Stormy’s bandwidth consumption to a fraction b of Tor’s total
bandwidth. This reserves Tor’s resources for its primary purpose of
relaying client traffic. We set b = 0.25, leaving room for variation
in Tor’s traffic, as one half of Tor’s bandwidth goes unused and 95%
of relay bandwidth has at least 25% spare capacity.

The other main constraint on TC is the limited memory of the
relays. A single relay may belong to several active TCs and thus
simultaneously run many protocol executions. Each execution uses
a non-trivial amount of memory (e.g. 291 MiB in the setting we will
consider). Therefore, wemust limit the number of active committees
that share a single member.

We initially activate a TC if doing so doesn’t violate these con-
straints, and increases overall bandwidth. That is, we consider the
TCs in order and add them if the total bandwidth used is less than
a b-fraction of Tor’s total bandwidth, if no relay would use too
much memory (we can use a conservative limit of 8 GiB for the
largest 1% of relays and 3 GiB for the rest), and if no member of
the committee has its bandwidth fully allocated to already-active
committees. Then, when a committee dies during the epoch, we
repeat the process with the remaining inactive committees.

We use a different process to activate a CC, because only one
is active at a time. This committee has sole responsibility for bit
generation and online computation, and thus should have high
bandwidth. Therefore, we simply activate the inactive committee
with the highest bandwidth. The same process applies if the active
CC dies during the epoch.

5.2 Protocol Aborts
Unlike the set of stable authorities, temporary relay downtime is
commonplace for benign reasons; for example, a relay operator may
take his relay down to apply software patches, or a hosting center
may lose power. To account for this natural churn, a design goal for
Stormy is that the system should tolerate some failures instead of
completely halting for the epoch when a relay goes offline or causes
an abort. During triple generation, if a TC fails, each member of the
TC notifies each member of the active CC, and the TC is marked
dead. If there exist any inactive TCs, a new TC will be activated.
The CC runs a MAC check on each batch of triples it receives
from a TC to ensure that no errors have been introduced during
transfer; if the MAC check fails, the TC is marked dead, and a new
TC is activated if possible. The only other possible failures occur
during bit generation, input sharing, and online computation—all
within the activeCC. If the activeCC fails, eachCCmember notifies

each relay in the network, and a new CC is activated if there are
any inactive CCs. Stormy halts in RelMode only when all TCs or
CCs are marked dead. Committees are reelected and protocols are
restarted at the beginning of the next epoch.

5.3 Security Parameters
Among the system components, many of the potential security
failure events occur independently. During committee election,
there is a chance that some committee is composed entirely of
malicious parties. There is a chance that a given triple committee
deviates from the protocol and is not caught. Finally, there is a
chance that the computation committee acts maliciously during bit
generation, input sharing, or online computation and is not caught.
To achieve λ-bit statistical security overall for an epoch, we must
consider the probability that any one of these occurs.

In the Authority Model, setting all statistical security parame-
ters to λ is sufficient regardless of the number of authorities, because
there is no committee election, and all computation halts for the
epoch upon any abort. The same is not true of the Relay Model
— mTC TCs and mCC CCs are elected, and the adversary can at-
tempt to cheat in each of them. The chance that a given committee
is entirely malicious is f c , where f denotes the adversary’s frac-
tion of bandwidth, and c denotes the size of each committee. Let
m = mTC +mCC, let λ1 be the statistical security parameter dur-
ing triple generation, and let λ2 be statistical security parameter
during bit generation, input sharing, and online computation. By
applying a union bound, the adversary’s overall success probability
is at mostmf c +mTC2−λ1 +mCC2−λ2 . To bound this by 2−λ , we
simplify the security constraint by setting λ1 = λ2 = λ′, which
yields the requirement thatm(f c + 2−λ′) ≤ 2−λ . Withm = 1008,
f = 0.25, and c = 25, setting λ′ = 56 is sufficiently large to provide
overall λ = 40-bit statistical security.

6 TOR COMPUTATIONS
We present two computations that are useful in Tor, median and
set-union cardinality, and we describe how they can be efficiently
computed via MPC. Even just these two functions could be applied
to measure and monitor many types of activity on the Tor network.
Moreover, they demonstrate key techniques, such as sorting and
sketching, needed for other types of computations. We expect that
these methods could be applied to a wide variety of use cases within
Tor, including for denial-of-service detection and mitigation, moni-
toring for protocol anomalies, detecting network errors and failures,
understanding user behavior, tracking performance characteristics,
and detecting blocking of clients and exits.

6.1 Median
The first function we demonstrate is the median of the relay in-
puts. The median is a robust statistic, insensitive to the presence
of outliers. This property is valuable in the context of Tor because
malicious relays can provide arbitrary inputs that might make other
statistics, such as average or maximum, meaningless. For an ex-
ample of how we might use median to to securely determine the
number of circuit failures in a day, each relay can count the num-
ber it observes, then it can infer a global count by dividing by the
fraction of circuits its sees (i.e. its bandwidth fraction), and then the



Table 1: Median circuit properties with 32-bit inputs.

# Inputs 1,000 3,000 5,000 7,000
# Input Bits 32,000 96,000 160,000 224,000
# Gates (×106) 6.70 2.76 54.0 78.4
# AND Gates (×106) 1.51 6.19 12.1 17.6
Depth 7,031 9,973 11,636 11,636
AND Depth 1,815 2,574 3,003 3,003

median of these values provides a robust estimate of the true total
count. This method can be used for any measurement for which
a relay can use its local measurements to make an inference of
the global statistic, such as counting the number of circuits, bytes,
clients, etc.

To securely compute the median, we use a circuit that sorts the
input values and then outputs the middle one. We use a Batcher odd-
even mergesort, which is a practical sorting network for realistic
numbers of inputs [66]. For each compare-and-swap operation
in the network, we use a comparison circuit with low AND-gate
complexity [52]. The total number of AND gates in the resulting
circuit on n inputs of b bits each is at most bn⌈log22(n)⌉/2, and
its AND depth is (b + 1)(⌈log2(n) + 1⌉ ⌈log2(n)⌉/2). Table 1 shows
the size and depth of the median circuit for different numbers of
32-bit inputs. Using 32-bit inputs enables integer input values up
to 4 billion, which is sufficient for most measurements of the Tor
network that relays might make.

6.2 Set-Union Cardinality
The second function we demonstrate is the cardinality of the union
of sets observed at the relays. That is, this function counts the num-
ber of distinct items among all items seen by relays. This computa-
tion is not robust, but could still provide much useful information
about the Tor network, such as how many unique users it has,
how that population changes over time, and how many different
domains are visited.

Computing set-union cardinality is straightforward if the do-
main is small—each relay maintains its set as a bit vector, each
observed item is hashed to an entry, and its value set to 1. The
relays use the vectors as input to a secure computation of the OR
of each entry, receiving as output the total number of entries with
value 1. However, this approach doesn’t scale well with the domain.
Tor has estimated as many as 4 million different users in a day.
Taking the union (i.e. the OR) of million-bit inputs from thousands
of relays would require billions of expensive triples to be gener-
ated offline. Similarly, counting billions of distinct items (e.g. URLs
visited) would require billions of additions and thus triples.

Therefore, we instead use a representation of set cardinalities
that is much smaller and enables cheaper MPC through the use of
free-XOR. Each relay stores a LogLog sketch [27], which provides
space-efficient counting of distinct items given a fixed relative error.
We choose LogLog over more-recent improvements [37] because
the circuit computing the count of a LogLog sketch is simpler.
Each LogLog sketch consists of k counters of bit-width w . We
modify the standard sketch by (1) storing each counter in a unary
representation (making the maximum stored value 2w instead of
22w ), and (2) representing the 0 or 1 value at each counter entry

with a bitstring of length s , where 0s represents 0 and any non-
zero string represents 1. These changes will reduce the number of
expensive AND gates needed during the MPC computation.

A relay locally updates its LogLog sketch when it observes an
item x . The relay hashes x to H (x) and uses the first log2(k) bits
of H (x) to determine which counter, Ci , to update. Examining the
remaining bits of H (x), the relay determines the largest number j
of consecutive ones at the beginning of that bitstring. The relay
then sets the first j entries of the chosen counter Ci to 1. The s-bit
representation of each of those entries is set to 1 by choosing each
of its s bits uniformly at random. We set s ≥ ⌈λ + log2(kw)⌉ so that,
over all counter entries, a random value results in a non-zero value
with probability at least 1 − 2−λ .

Using this input representation significantly improves the effi-
ciency of the computation. It reduces the OR of the counter bits
to XOR operations, which are free. This opens an attack in which
a malicious Computation Committee member sets a counter to 0,
but doing so requires guessing an unknown random s-bit value,
and s is chosen so that this occurs with probability at most 2−λ .
(Note that a CC member can easily change a 0 value to a 1, but
this is allowed, since it can provide a logical 1 in its own input
for any counter entry, which remains 1 after taking the union.)
Therefore, we do not need to protect against errors until after in-
put sharing and union are computed through bitwise XOR—input
parties simply secret-share their inputs to the CC using FAccMsg,
and committee members then just XOR the inputs. Only afterwards
do they use the preprocessed random bits to add MAC tags to the
resulting secret-shared values. The unique count is then computed
from those aggregated counters.

To obtain this cardinality, the secure computation determines
the last index zi of a 1 entry in each counter Ci (0 if none) and
returns the sum z =

∑
i zi of these indices. Durand and Flajolet [27]

show that αk2z/k is an unbiased estimator of the true distinct count,
where α is a constant that adjusts for bias. They also show that
it has a standard error of approximately 1.3/

√
k . Thus the value

produced by the secure computation can be transformed into a
cardinality estimate using public information.

The total number of AND gates in this LogLog circuit is at
most k(w(s + 1) + ⌈log2(w)⌉ + ⌈log2(k)⌉). Its AND depth is at most
⌈log2(s)⌉ +w + ⌈log2(k)⌉(⌈log2(w)⌉ + ⌈log2(k)⌉). Table 2 shows the
size and accuracy of the LogLog circuit with counters of width
w = 32 and counter entries of size s = 55 bits. With 32 entries
per counter, cardinalities above 4 billion can be measured. For
k = 1, 024, setting the bits per entry at s = 55 yields the desired
failure probability of at most 2−40. Note the circuit size doesn’t
vary with the number of inputs, which means that the amount of
MPC communication after input sharing would not be affected by
growth in the Tor network.

7 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of Stormy. We have
implemented all of the protocols in roughly 10k lines of C/C++. 3
We use cryptographic primitives provided by the OpenSSL, Sodium,
SimpleOT, and MIRACL libraries [1–3, 18]. SIMD CPU instructions
are used in critical regions of code to improve performance. Our
3The code is available online at <https://github.com/rwails/stormy>.

https://github.com/rwails/stormy


Table 2: LogLog circuit properties after XORed relay inputs.

# Counters 128 512 1,024 4,096 8,192
# Input Bits (×106) 0.23 0.90 1.80 7.21 14.4
# Gates (×106) 0.47 1.89 3.78 15.1 30.2
# AND Gates (×106) 0.23 0.90 1.81 7.2 14.5
Depth 87 97 102 112 117
AND Depth 49 51 52 54 55
Std. Error 11.5% 5.7% 4.1% 2.0% 1.4%

implementation does omit some low-level details; for example, it
does not recover gracefully from host timeouts/disconnects, and it
is not hardened against timing-analysis attacks. We do not expect
these omitted details to significantly affect the performance charac-
teristics of our implementation. We measure the performance of
each protocol piece in isolation (Sections 7.2–7.3) and also provide
holistic end-to-end estimates of Stormy’s performance (Section 7.4).

7.1 Methodology
We use the Shadow network simulator [41] to analyze the protocols’
network costs. Shadow is a tool frequently used to simulate the Tor
network and modifications/additions to Tor’s protocols [40, 46, 64].
Using Shadow allows us to run our protocol implementations at
network-scale and on networks with properties that accurately
model the Tor network.We explore ranges of network parameters in
our experiments, e.g., by varying bandwidth, latency, and committee
size. We measure the time required to complete an honest protocol
execution and the number of application-layer bytes transmitted
by each host. Usually in our protocols the hosts send and receive
an equal number of bytes; in cases of asymmetry we present “data
transmitted (TX)” as the max of bytes sent and received.

Table 3 shows the default network parameters used across Shadow
experiments. In the Authority Model, a single Computation Com-
mittee with high bandwidth (1 Gbps by default) performs both the
offline preprocessing and the online computation. We use a one-
way latency of 50 ms between the authorities, which corresponds
to the median latency between Tor relays reported in the 2015 mea-
surement study of Cangialosi et al. [16]. In the Relay Model, many
parallel Triple Committees generate and transfer authenticated
triples; the Computation Committee generates authenticated bits,
receives relay inputs, and performs the online computation. For
the default bandwidth allocations of the TC and CC members, we
used the median active-committee bandwidths of 100 simulations
of the committee-election process on a 2018-10-01 Tor consensus
with mTC = 1, 000 sampled TCs, mCC = 8 sampled CCs, and a
committee size of c = 25. We conservatively set the committee
members’ latencies to 250 ms, which corresponds to the highest la-
tency measured between any two Tor relays [16]. In both RelMode
and AuthMode, when running input-sharing experiments, we use
7,000 input parties, which is an upper bound on the number of Tor
relays in 2018-10. All input parties are configured pessimistically
with 20 kbps links, which is the minimum bandwidth advertised by
any relay in the Tor network.

Using Shadow comes with a couple of limitations. First, Shadow
measures only the network performance of the protocols; computa-
tional performance (e.g. CPU usage or memory consumption) is not
captured in the simulations. However, the protocols used in Stormy

Table 3: Default network parameters used in experiments.

BW Latency Parties

RelMode

Triple Committee 6.4 Mbps 250 ms 25
Computation Committee 12 Mbps 250 ms 25

AuthMode (CC) 1 Gbps 50 ms 5
Input Party 20 kbps 250 ms 7,000

are computationally inexpensive. The offline preprocessing consists
primarily of symmetric-key operations, and the online computation
requires almost no cryptographic operations. Communication costs
dominate protocol runtime, and so our Shadow experiments should
closely estimate total protocol runtime. Second, it takes prohibi-
tively long to simulate network-scale operation on long timescales
(e.g. many hours). Therefore, when estimating the end-to-end per-
formance in RelMode, we instead use a custom event simulator that
incorporates results from the Shadow experiments (see Sec. 7.4).

7.2 Offline Preprocessing
7.2.1 Authenticated Triple Generation. Recall from Section 4 that
one secret-shared authenticated AND triple is required for each
AND gate evaluated during the online phase. Triple generation
generally requires the most time and communication of all the
components of Stormy. We evaluate the cost of triple generation by
running experiments in which a single committee generates a batch
of authenticated triples. The TC in RelMode generates batches of
5,112 triples at a time, and the CC in AuthMode generates batches
of 280,000 triples. Smaller batch sizes require less memory, but
reduce the protocol’s efficiency. We choose batch sizes that are
minimal at a given level of efficiency.

In the default configuration, a single TC in RelMode generates
a batch of 5,112 triples in 210 s. 91 MiB of data is sent/received
by each of the relays. The CC in AuthMode generates a batch of
280,000 triples in 9.0 s. 420 MiB of data is sent/received by each
authority.

Figures 5.1–5.5 present the throughput and costs of generating
triples when produced in various experimental setups. The Auth-
Mode CC produces batches of 280,000 and a RelMode TC produces
batches of 5,112 in all experiments. A single RelMode TC achieves
modest throughputs in the range [2, 43] triples

second for realistic com-
mittee bandwidth capacities; however, since many TCs generate
triples in parallel, RelMode’s network-wide, overall throughput
is much higher (7.4). The single AuthMode CC achieves much
higher throughputs in the range [2.7k, 36k] triples

second because of their
assumed high-bandwidth links. Each triple costs 18 KiB of com-
munication per-party in the 25-member TC. In the 5-member CC,
each triple costs only 1.5 KiB due to the smaller committee size and
lower β-overhead achieved at the larger batch size (see Section 4).

Oblivious-transfer (OT) extensions performed pairwise between
each host constitute the dominant cost of triple generation. We
find that increasing available bandwidth can significantly improve
runtime because the large messages sent during OT extension can
be transmitted more quickly. Because each party performs 6 OT
extensions with every other party, the runtime/transmission-cost
of triple generation scales linearly with the size of the commit-
tee. The offline-phase protocols do not require many rounds of
communication so latency has a minimal effect on runtime.
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Figure 5: Network performance measurements of our implementation of the offline phase triple generation [68] and online
phase evaluations of the median and set-union cardinality circuits (Section 6).

7.2.2 Authenticated Bit Generation. Authenticated bit generation,
the other component of offline preprocessing required for input
sharing, is orders-of-magnitude less expensive than triple genera-
tion. For brevity, we report results only in the default experimental
configurations. 224,000 bits must be generated by the CC to per-
form the input sharing for a median computation with 7,000 32-bit
inputs. 1,802,240 bits must be generated for a set-union cardinality
computation with 1,024 counters, 32 entries per counter, and 55-bit
entries. The RelMode CC generates 224k bits in 1.9 min using 73
MiB of communication; 1.8M bits takes 14 min and 579 MiB of
communication. The AuthMode CC generates 224k bits in 2.8 s
using 8.6 MiB of communication; 1.8M bits takes 3.8 s and 69 MiB
of communication.

7.3 Online Computations
7.3.1 Input Sharing. Similar to bit generation, input sharing is
the least expensive part of the online phase, so we present results
only in the default configuration and only for the median circuit
(recall from Section 6 that the online input-sharing protocol is not
necessary for set-cardinality). With 7,000 input parties, RelMode
takes 140 s and each relay in the CC transmits 89 MiB; AuthMode
takes 24 s/16 MiB. We estimate that secret-sharing inputs for set-
cardinality (in the default configuration) takes 92 s/60 MiB per CC
member in RelMode and 92 s/320 MiB in AuthMode.
7.3.2 Median Circuit. For the median and set-union cardinality
simulations, we assume the CC has already has the triples, bits, and
input shares necessary for circuit evaluation. The combination of
circuit AND depth and network latency almost completely deter-
mines online computation runtime; this is because the hosts must
partially-open some authenticated bits after each AND gate level

by sending and receiving bits to/from a designated party which
incurs two one-way latency costs. This cost adds up quickly in our
networks with relatively high latency. In contrast, communication
costs are low as only a few bits are required per AND gate in the
online-phase. Therefore, we do not show plots varying bandwidth
and committee size as varying these parameters has minimal effect
on runtime. We will observe that the online-phase runtime can be
accurately predicted as d · RTT, where d is the AND depth and the
round-trip time (RTT) is twice the one-way latency.

When the number of inputs is not being varied, we set themedian
circuit to accept 7,000, 32-bit integer inputs. TheCC in the RelMode
computes this median in 25 min (the circuit has ∼3,000 AND depth)
using 10 MiB of communication. The AuthMode CC can compute
this median in 5 min (7.1 MiB) due to their lower latencies.

Figures 5.6–5.7 plot the experimental runtime as latency and
the number of 32-bit inputs is varied. As expected, runtime and
latency share a linear relationship. Recall from Section 6 that our
median circuit construction on n inputs of b bits each has AND
depth of about b log22(n)/2. Accordingly, we find that the shape
of the runtime-input graph is sublineary, which enables efficient
scaling of the online median computation as the Tor network grows.

7.3.3 Set-Union Cardinality. In these experiments, by default, we
use a set-union cardinality circuit with 1,024 counters, 32 entries
per counter, and 55-bit counter entries. In this default configuration,
theCC (in bothmodels) can compute a cardinality estimate in under
30 seconds. This circuit requires less than 5 MiB of communication
per CC member. The low runtime can be attributed to the shallow
AND depth (= 21) of the circuit. As the Figure 5.9 runtime-counter
plot shows, increasing the number of counters used in the set-union



cardinality circuit (and thus increasing the accuracy of the count)
does not have a significant impact on the online protocol’s runtime.
However, keeping this number low keeps the number of triples
required low. For example, increasing the number of counters from
1,024 to 8,096 only decreases the cardinality computation’s standard
error from 4% to 1% but yields a tenfold increase in the number of
AND gates (and thus triples) required to compute the circuit.

7.4 System Performance
Here we use the preceding experimental results to estimate the per-
formance of Stormywhen computing themedian and set cardinality,
including both total time and communication. This estimation is
straightforward for the Authority Model, as the authorities exe-
cute all parts of the system, and so we simply add up the time and
communication of each piece (i.e. triple and bit generation for the
offline phase, input sharing and computation for the online phase).

Performance estimation in the Relay Model is more complex,
as it uses a large number of relays comprising sets of committees
for the pieces of the protocol. The main challenge is analyzing
the offline phase, which involves many differing relay bandwidths,
relay churn, and performance over multiple computations. To per-
form this analysis, we build a custom simulator that models the
execution of the offline phase over a single measurement epoch.
Each simulation uses a sequence of published Tor consensuses [5]
to determine the available relay population in each hour of the
24-hour epoch. The simulation process is then: (1) a set of Com-
putation Committees (CCs) is sampled from the initial consensus
and one chosen to be initially active, (2) a set of Triple Commit-
tees (TCs) is similarly sampled and a subset initially activated that
has maximal throughput without violating memory or bandwidth
constraints, (3) each active TC alternates between generating and
transferring triples with the generation time determined by the
TC’s bandwidth and a linear regression on the experimental results
over varying bandwidths, (4) TCs are queued to transfer triples to
the CCwith each transfer proceeding as fast as the two committees’
bandwidths allow, (5) any time the CC is not receiving triples it
generates batches of random bits at a speed based on its bandwidth
and a linear regression of the experimental results, and (6) any com-
mittee with a member missing from an hourly Tor consensus dies
at that hour, and some remaining sampled but inactive committees
are activated in its place.

We simulate committee election on the Tor network for the day
of 2018-10-01 using data from Tor Metrics [5]. As described in
Section 2, the Tor network on that day consisted of 6,331 relays
providing 275 Gbps in aggregate. Of these relays, we restrict our-
selves to using the 5,506 that have the Fast and Running flags, as
well as an archived descriptor, all of which Tor clients also require.
Of these, 2,381 were guards. We use the consensus weights to select
relays and report bandwidth using the bandwidths advertised by
the relays in their descriptors. Each relay is assumed to have a
250 ms one-way latency to each other relay.

We perform the simulation 100 times where the relays are gen-
erating offline material for the median circuit and 100 times where
the relays are generating offline material for the set-union cardi-
nality circuit. For the median simulations, we samplemTC = 1, 000
TCs andmCC = 8 CCs. For the cardinality simulations, we sample
mTC = 375 TCs andmCC = 633 CCs. Both yield 1,008 total sampled

committees, but computing the median requires more triples and
thus benefits from more TCs, while the computing the cardinality
requires more bits and thus benefits from a higher-bandwidth CC.
The randomness we vary between simulations is the random bit
string used for committee election.

7.4.1 Committee and Churn Analysis. Here we provide results de-
tailing: (1) the number of committees activated, (2) the bandwidth
of each committee (i.e. the bandwidth allocated by all members
to that committee), and (3) churn statistics across the committees.
We limit this set of results to the median-circuit simulations be-
cause these simulations require the most multiplication triples and
thus require the highest level of parallel preprocessing. Any value
that can change over the course of a simulation is reported on a
time-averaged basis, that is, averaged over all hours during the
simulation. For statistics that we measure, we record the median
value and interquartile range (IQR) across simulations.

During the simulations, we never observed that all the sampled
Computation Committees failed. Indeed, 75% of the time, the first
activated CC lasted the entire 24 hours. The maximum number of
CCs that died at any point was 3, wherewe sampledmCC = 8CCs in
total. The median bandwidth of the CC was 11.0 Mbps with an IQR
of [10.0, 13.1]. This bandwidth limits the speed of bit generation and
triple transfer, which is why the maximum-bandwidth committee
among those sampled and alive is used as the active one.

We sampled mTC = 1, 000 TCs, but only 327 were active in
the median case (IQR: [319, 333]). 712 of the 1,000 TCs (IQR: [703,
722]) died during the median 24-hour simulation. This resulted in a
median bandwidth fraction usage of 21.2% (IQR: [20.8, 21.6]) over
time over all active committees, even though 25% of the bandwidth
was always used at the beginning of the simulation. Of the 5,506
active relays at the start of the simulation, a median of 2,473 (IQR:
[2,446, 2,491]) were in at least one active committee. The median
average TC bandwidth was 7.1 Mbps (IQR: [6.8, 7.4]). This is lower
than the 11.0 Mbps CC bandwidth primarily due to the fact that all
TCs were used and not just the highest-bandwidth one.

7.4.2 Overall System Performance. Overall performance estimates
of the systemwhen computing a single median or a single set-union
cardinality are reported in Table 4. We compute these estimates
using the preceding Shadow experiments and RelMode simulations.
In all of our simulations, we record the communication required
for each party and the time taken to complete each phase of the
protocol. The Time column reports the measured time required to
complete a phase, and the Data TX column reports the measured
amount of data the each member of a TC or CC transmits during
the phase. Note that, during triple generation in RelMode, because
relays are sampled to serve on a number of TCs proportional to their
bandwidth, relays who can provide more bandwidth will transmit
more data. Therefore the Data TX value reported in the RelMode
TC is computed for a relay with a 1 Gbps link (a relay with a 500
Mbps link, for example, would transmit one-half as much data). All
other values in the table are not dependent upon the bandwidth
allocations of the hosts running the protocol.

For median computations, the online communication is relatively
low, and the time needed for the online phase is due to high round
complexity and high assumed latency. Therefore, using pipelining
(i.e. running the online phase concurrently with a subsequent offline



Table 4: Summary of Section 7 performance evaluation.
Communication costs are reported per-party and reported
broken down by committee type (TC or CC).

Median Set Cardinality

Phase Time Data TX Time Data TX

TC CC TC CC

AuthMode

Offline 9.5 min ✗ 26 GiB 1.1 min ✗ 3.0 GiB
Online 5.3 min ✗ 21 MiB 1.6 min ✗ 302 MiB

RelMode

Offline 40 min 28 GiB 430 MiB 8.7 min 2.9 GiB 700 MiB
Online 28 min ✗ 99 MiB 2.0 min ✗ 61 MiB

phase), we estimate that 151 medians can be computed every 24
hours in AuthMode and 36 in RelMode. For set-union cardinality,
input sharing becomes expensive due to the larger relay inputs, but
even without pipelining, we estimate 533 daily computations can
be performed in AuthMode and 134 in RelMode.

8 RELATEDWORK
8.1 Tor Measurement
Previous work on privacy-preserving Tor measurement has fo-
cused on applying partially-homomorphic cryptosystems to the
problem, limiting their functionality and security. The PrivEx [30]
and PrivCount [42] systems can only provide simple sums of the
relay inputs. Moreover, a single malicious relay can add in an arbi-
trary error term to the result, for example adding a random value
to its input and making the sum useless. HisTorε [53] is designed
to solve this problem by allowing each relay a limited number of
input bits. However, it requires an analyst that cannot collude with
any of the aggregating parties. Melis et al. [56] point out the use-
fulness of the median to robustly aggregate Tor inputs and suggest
computing it using a count sketch. Their protocol reveals signifi-
cantly more information about the inputs, however, as it performs
a binary search on the space of possible input values that reveals
the number of inputs in the search interval at every step. It is also
vulnerable to an input party that doesn’t prepare its sketches prop-
erly, where handling such a case is the main goal of computing
the median. The PeerFlow bandwidth-measurement system [45]
requires a robust estimate of the relays’ bandwidth, and it presents
a method to securely compute a median by securely computing
tallies for bins covering the space of input values. This is both
approximate and reveals more about the inputs than just their me-
dian. PSC [31] securely computes an aggregate unique count, but
it uses a hash-table representation that grows linearly with the
maximum count and is thus exponentially more expensive than
our proposed method. The preceding systems generally allow the
relays to store and update measurements obliviously and provide
differentially-private outputs [28]. Their techniques for oblivious
storage are compatible with and orthogonal to our system for ag-
gregation. Our MPC protocols can compute differentially-private
outputs, but we leave the design of such functions to future work.
The Prio system [21] describes how inputs can be securely tested
for validity as expressed by an abritrary Boolean circuit. Similar

to our system, the Prio protocol uses offline/online MPC protocols,
although the offline material can be supplied by the input party for
efficiency. This technique can complement our system by providing
efficient input validation, but it does not replace the need for robust
statistics, as a valid input may still be a relative outlier.

8.2 MPC (Multi-party Computation)
Secure computation was originally introduced by several semi-
nal works in the 1980s [11, 33, 70]. More recently, a long line of
work starting with the work of Damgård et al. [23] has focused on
building efficient secure computation in the preprocessing model
(e.g., [15, 22, 32, 49]). These protocols introduced the notion of com-
puting on authenticated values, and we follow this approach in
our work. To the best of our knowledge, the largest experiment
for real-world deployment of MPC was given by Wang et al. [68]
showing global-scale MPC between 128 parties.

Another related line of work uses committee election to reduce
communication required in large-scale MPC protocols. Original
protocols in this area (e.g., [14, 19, 24, 25, 63, 72]) have focused on
selecting committees that are poly-logarithmic in n, ensuring that
each committee retains an honest majority. For n = 7, 000, these
committee sizes are prohibitively large for the O(n2) communica-
tion of malicious majority MPC protocols, such as the one we use
in our work. It is an interesting question whether we could use
honest majority committees in a practical solution.

A more similar approach to our own is taken by Choudhury
et al. [20] who focus on reducing the communication of MPC for
evaluating large circuits. They also use small committees with at
least one honest party. Their main focus is to ensure robustness
in case of abort, for which they only use one committee at a time.
While they point out that computations can be performed in parallel,
they do not focus on maximizing throughput, as we do here.

Hazay et al. [35, 36] propose the TinyKeys protocol for bandwidth-
efficient triple generation. TinyKeys uses two committees: one (P1)
with at least one honest party, and the other (Ph ) with many hon-
est parties, where increasing the number of honest parties h in
Ph reduces the key length ℓ and thus the communication. In the
setting of randomly-sampled committees from a network that is at
most 25% malicious, over the set of values for h and ℓ considered
for actively-secure TinyKeys (Table 2 [35]), TinyKeys achieves at
most a 6.5x decrease in communication complexity compared to
the protocol of Wang et al. [68]. In contrast, Stormy increases the
triple-generation rate by improving bandwidth utilization via mul-
tiple parallel triple committees. In our simulations, Stormy uses up
to 1,000 committees simultaneously to utilize as much as 25% of
Tor’s bandwidth, where even the highest-bandwidth committee in
those simulations could only use 0.19% of the total bandwidth by
itself. Therefore, we estimate that we increase by 25/0.19 ≈ 132x
the bandwidth available for triple production compared to using a
single committee. Communication costs dominate triple production,
and so we estimate that we increase the triple-generation rate over
TinyKeys by about 132/6.5 ≈ 20.3x (see the technical report [65]
for details).

These approaches seem orthogonal to some extent. It may be
possible to run parallel executions of TinyKeys, thus combining the
reduced communication of TinyKeys with the increased bandwidth



utilization of Stormy. Challenges to making this work include (1)
TinyKeys uses short MAC shares, but the MAC switching protocol
(Figure 2) that we use for parallel composition requires MAC shares
long enough to ensure unpredictable hashes; and (2) TinyKeys
uses larger committees to ensure more honest parties, but a large
committee is more vulnerable to churn, reducing the number of
triple batches it can compute before dying.

9 CONCLUSION AND FUTUREWORK
Although Tor is an important tool for online privacy, experience
has shown that completely hiding all information about the net-
work harms its mission by making the network hard to defend,
understand, and improve. We show that MPC can provide a high
level of control for such decisions. Our implemented system could
be used today to solve existing problems in Tor, and it opens up
possibilities that could not previously be contemplated. Our work
suggests several valuable directions for future work, including im-
proving resilience by adapting MPC protocols with identifiable
abort [38] to identify and then remove misbehaving parties, design-
ing differentially-private statistics with low circuit complexity, and
applying secure computation to proactively detect and mitigate
attacks, failures, and errors in Tor.
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A IDEAL FUNCTIONALITIES
This appendix contains the ideal functionalities used or realized by
the protocols in the main body of the paper.

A.1 FPre

Functionality FPre, realized by ΠPre (Figure 1) appears in Figure 6.

A.2 FInput

Functionality FInput, realized by ΠInput (Figure 4) appears in Fig-
ure 7.

A.3 FAccMsg

The accountable message functionality FAccMsg used by ΠInput
is given in Figure 8. This functionality is used to send messages
between two parties in an accountable way. Specifically, it allows
a sender (Pin) to send a (private) messagem to a receiver R in the
presence of a committee C in such a way that R cannot later deny
that he received the message. This functionality consists of two
procedures, send and reveal. The send procedure allows Pin to send
a message to R in such a way that all parties in C agree whether
a valid message was sent, without knowing the content of that
message. The reveal procedure allows R to reveal the messagem he
received in send to the rest of C . Note that if send succeeds, then
Pin will not be disqualified in the reveal procedure.

A.4 FOnline

We define an ideal functionality for the online phase of our protocol
in Figure 9. The Computation Committee members provide the au-
thenticated inputs from FInput and the MAC key and authenticated
triples from FPre. The functionality reconstructs ∆ and verifies that
the inputs and triples are correctly authenticated under ∆. If not, it
sends abort to all parties. Otherwise, it computes the circuitC given
the inputs and returns the result to the adversary. The adversary
then decides whether the functionality should return the output to
the honest committee members.



Functionality FPre
Notation:
• Let CC be the Computation Committee.
• Let TC1, . . . , TCmTC be the Triple Committees.
• Let c be the size of each committee.
• Let A denote the set of parties controlled by the adversary
• Initialize ∆ =⊥.
Initialize: On input init from CC,
• Forward each input to A as it is received.
• If ∆ =⊥, set ∆← F2λ , and randomly choose shares ∆(i ) ←
F2λ such that

∑c
i=1 ∆

(i ) = ∆. Parties in A ∩ CC can choose
their shares.

• If A ∩ CC , ∅, allow A to input abort, which causes the
functionality to abort and reject further calls.

• If A does not abort, output ∆(i ) to Pi .
Random: On input (random, F, b) where F ∈ {F2λ , F2 } from
each Pi ∈ CC,
• Forward each input to A as it is received.
• For h = 1, . . . , b , sample a random field element rh ← F.
• For h = 1, . . . , b , produce random authenticated sharing
[[rh ]]CC (i.e., compute µh = rh · ∆ and produce random
sharings over CC of rh and µh ). Parties in A ∩ CC can
choose their shares.

• If A ∩ CC , ∅, allow A to input abort, which causes the
functionality to abort and reject further calls.

• If A does not abort, for h = 1, . . . , b , output [[rh ]](i ) to
Pi ∈ CC\A.

Triples: On input (triples, ℓ) from each Pi ∈ TCj ,
• Forward each input to A as it is received.
• For h = 1, . . . , ℓ, choose xh, yh ← F2, and set zh = xh ·yh .
• For h = 1, . . . , ℓ, produce random authenticated sharings
[[xh ]]CC, [[yh ]]CC, and [[zh ]]CC (i.e., for w ∈ {xh, yh, zh }
compute µ = w · ∆ and produce random sharings over CC
of w and µ ). Parties in A ∩ CC can choose their shares.

• If A ∩
(
TCj ∪ CC

)
, ∅, allow A to input abort, in which

case further calls from TCj are rejected, abort is output to
Pi ∈ TCj , and abortj is output to Pi ∈ CC. The functionality
continues to respond to calls from other committees.

• If A does not output abort, for h = 1, . . . , ℓ, output(
[[xh ]](i ), [[yh ]](i ), [[zh ]](i )

)
to Pi ∈ CC\A.

Figure 6: Preprocessing functionality.

A.5 FRM−MPC

We give the functionality for RelMode MPC in Figure 10. This
is designed the setting in which a large number of parties wish
to participate in a secure computation by providing inputs and
(potentially) participating in the computation. To enable efficient
computation, there is a single designated Computation Committee
(CC) of size c . This committee performs the online phase of the
computation and is allowed to abort the functionality. No other
party can cause an abort, making this MPC functionality resilient
to failure and malicious behavior by most parties.

Functionality FInput
Notation:
• Let Pin be the sender with input x .
• When a party Pi outputs (abort, Pin) this means he aborts

and blames Pin. If he outputs (abort, C) this means he aborts
and blames the committee.

• Sin ⊆ C is the set of parties blaming Pin, SC ⊆ C is the set
of parties blaming the committee, and Saccept ⊆ C is the set
of parties that blame nobody.

Authenticate Input: On input {x ih } from Pin,
where h ∈ {1, . . . , b }, i ∈ {1, . . . , c },
• Saccept = C .
• The functionality computes xh =

∑c
i=1 x

(i )
h , and random

shares of the authenticated value,
{
(∆xh )(i )

}
. It gives A the

authenticated shares
(
x (i )h , (∆xh )(i )

)
for Pi ∈ A.

• Letm(i )h = (∆xh )
(i ).

• If Pin < A and A , ∅, A partitions C into (Saccept, SC ).
• if A = {Pin }, A either sets Sin = C , or Saccept = C .
• If {Pin } ⊂ A, A partitions C into (Saccept, Sin, SC ). Ad-

ditionally, for each Pi ∈ Saccept, A sets the values of
(x (i )h ,m(i )h ), arbitrarily.

• The functionality sends (abort, C) to Pi ∈ SC , (abort, Pin)
to Pi ∈ Sin, and

(
x (i )h ,m(i )h

)
to Pi ∈ Saccept.

Figure 7: Input sharing functionality.



Functionality FAccMsg

Notation:
• Let Pin be the sender with inputm.
• Let R be the receiver.
• Let C be the committee (Note that R ∈ C ).
• When a party Pi outputs (abort, Pin) this means he aborts

and blames Pin. If he outputs (abort, C) this means he aborts
and blames the committee.

Send: On input (send,m) from Pin,
• The functionality storesm.
• If Pin < A, output (accept,m) to R , and output accept to all

parties in C \ {R }.
• If Pin ∈ A, do the following:

– If R < A, allow A to specify an input in {accept, abort}.
If A inputs accept, then R outputs (accept,m) and all
parties in C \ {R } output accept. If A inputs abort, then
all parties in C (including R) output (abort, Pin) (i.e., they
abort and blame Pin).

– If R ∈ A, allow A to specify a partition of C ,
(Saccept, Sin, SC ). All Pi ∈ Saccept output accept (if R ∈
Saccept, he additionally outputsm). All Pi ∈ Sin output
(abort, Pin). All Pi ∈ SC output (abort, C) (i.e., they abort
and blame the committee).

Reveal: On input (reveal) from R ,
• If R < A, the functionality outputs (accept,m) to all parties

in C .
• If R ∈ A and Pin < A, A specifies a partition of C ,
(Saccept, SC ). Every Pi ∈ Saccept outputs (accept,m). Every
Pi ∈ SC outputs (abort, C).

• If both R ∈ A and Pin ∈ A, A specifies a partition as
above, and, additionally, for each party Pi ∈ Saccept, A
specifies a message m′i . Then, every player Pi ∈ Saccept
outputs (accept,m′i ) and Pi ∈ SC output (abort, C).

Figure 8: Accountable messaging functionality.

Functionality FOnline
Notation:
• The functionality is parametrized by a Boolean circuit C.
• Let CC = {P1, . . . , Pc } be the Computation Committee.
• Let x1, . . . , xn be all of the input bits successfully provided

by all parties during the input sharing phase.
• Let ℓ denote the total number of AND gates in the circuit C,

and
(
[[w j ]]

(i ), [[yj ]](i ), [[zj ]](i )
)
denote the i th party’s shares

of the jth triple.
Compute:
Party Pi ∈ CC provides the following input: ∆(i ),{(
[[wh ]]

(i ), [[yh ]](i ), [[zh ]](i )
)}ℓ
h=1,

{(
[[xh ]](i ), [[∆xh ]](i )

)}n
h=1

• If not every member of CC provides the same number of
input shares and triple shares, output abort to every party.

• Reconstruct ∆ from the shares provided.
• Reconstruct and verify the input values, x1, . . . , xn from

the shares provided. If verification fails for any input value,
output abort to every party.

• Reconstruct and verify the triples from the shares provided.
If any triple is invalid (z , w · y), or if verification fails for
any triple value, output abort to every party.

• Compute C(x1, . . . , xn ) and output the result to A.
• If A says continue, send C(x1, . . . , xn ) to the remainder of

CC. Otherwise, send abort to the remainder of the CC.

Figure 9: Functionality for computing the online phase.

Functionality FRM−MPC

Notation:
• The functionality is parametrized by a Boolean circuit C

outputting o bits.
• Let P = {P1, . . . , Pn } be the set of all parties, and let CC =
{Pi1, . . . , Pic } be the Computation Committee.

Compute: On input (x1, . . . , xn ) from P (each party supplies
one input):
• If A∩CC , ∅, then A inputs either abort or run to the func-

tionality. If A inputs abort, then the functionality outputs
⊥ to all parties.

• For any Pi ∈ A, A may input (abort, i) to the functionality
(i.e., if an input party aborts), in which case the functionality
sets xi =⊥ and outputs (abort, i) to Computation Commit-
tee.

• The functionality computes (y1, . . . , yo ) = C(x1, . . . , xn )
• If A ∩ CC , ∅, then the functionality returns y to A. A

specifies a set Sabort ⊆ P.
• The functionality outputs ⊥ to all Pi ∈ Sabort and outputs
(y1, . . . , yo ) to all Pi ∈ CC \ Sabort.

Figure 10: Large-Scale MPC functionality.
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