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Abstract
Fully Encrypted Protocols (FEPs) have arisen in practice as a tech-
nique to avoid network censorship. Such protocols are designed
to produce messages that appear completely random. This design
hides communications metadata, such as version and length fields,
and makes it difficult to even determine what protocol is being used.
Moreover, these protocols frequently support padding to hide the
length of protocol fields and the contained message. These tech-
niques have relevance well beyond censorship circumvention, as
protecting protocol metadata has security and privacy benefits for
all Internet communications. The security of FEP designs depends
on cryptographic assumptions, but neither security definitions nor
proofs exist for them. We provide novel security definitions that
capture the metadata-protection goals of FEPs. Our definitions are
given in both the datastream and datagram settings, which model
the ubiquitous TCP and UDP interfaces available to protocol de-
signers. We prove relations among these new notions and existing
security definitions. We further present new FEP constructions and
prove their security. Finally, we survey existing FEP candidates and
characterize the extent to which they satisfy FEP security. We iden-
tify novel ways in which these protocols are identifiable, including
their responses to the introduction of data errors and the sizes of
their smallest protocol messages.
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1 Introduction
One approach to avoid network censorship is to use a Fully En-
crypted Protocol (FEP). FEPs are designed to hide communications
metadata, such as the precise length of a plaintext message, the
encryption algorithms being used, and the exact protocol being
run. A goal of FEPs is that each byte appears uniformly random (a
design sometimes referred to as “obfuscated”, “look-like-nothing”,
“randomized”, or “unfingerprintable” [17, 39, 52, 56]). Censorship cir-
cumvention tools using FEPs include the popular Shadowsocks [47],
obfs4 [34], and VMess [50] systems, each of which provides its own
unique FEP. The Noise protocol framework [39] requires cipher-
texts be indistinguishable from random to be “censorship-resistant”
(although it fails to specify all protocol aspects needed to satisfy
that goal). While methods to identify and block FEPs exist [51, 52],
FEPs nonetheless continue to be effective and popular [34, 40, 47].

FEPs are also helpful outside of a censorship setting. Hiding
protocol metadata can improve security (e.g., preventing attacks
targeted at a specific protocol or implementation) and privacy (e.g.,
preventing traffic analysis of message lengths). Indeed, standard
encrypted transport protocols like TLS and QUIC have moved over
time towards encrypting more protocol metadata, as it is repeat-
edly observed that seemingly innocuous metadata is unexpectedly
sensitive. The Pseudorandom cTLS extension [46] is a FEP that has
recently been proposed to the IETF, citing security and privacy as its
main motivations. In addition, the use of FEPs can prevent Internet
ossification because they provide little metadata for middleboxes
to operate on, a strategy similar to the use of random extensions in
GREASE [9]. Thus, we consider FEPs to be a natural endpoint of
encrypted transport protocol development.

Despite these motivations, FEPs have primarily been developed
by the open-source community. Consequently, real-world protocols
have been developed without mathematical security goals, even
though their security depends on cryptographic assumptions1. Also,
in practice, different developers make a variety of design errors [23],
as they lack a common set of FEP techniques and pitfalls.

Therefore, we propose novel, precise security definitions for
FEPs. We formalize the goal of producing apparently random proto-
col messages with a passive adversary, and then we extend that to
the goal of appearing otherwise predictable (and thus not leaking
information) with respect to an active adversary. The predictability
applies to the protocol’s behavior when ciphertexts are modified
and to the protocol’s use of channel closures, an observable feature
of connection-based transport protocols such as QUIC and TCP.

1The Pseudorandom cTLS proposal [46] cites the need for such formalization: “TODO:
More precise security properties and security proof. The goal we’re after hasn’t been
widely considered in the literature so far, at least as far as we can tell.”
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Research has shown that channel closures can be used to iden-
tify specific FEPs [26], and real-world measurements indicate that
censors are already doing so [4].

In addition, most FEPs (and many other encrypted protocols)
include message padding as a way to prevent traffic analysis from
making inferences on traffic contents based on ciphertext lengths.
For FEPs, an effective padding strategy is particularly powerful
because each byte appears random, and so the number of bytes is
the main remaining source of communications metadata. However,
existing padding mechanisms are ad hoc and have no precisely
stated goals. As a consequence, they fail to provide full control
over ciphertext lengths, a problem that has been observed by FEP
developers themselves [22], which serves as the basis for state-
of-the-art FEP detection using packet lengths [51], and has been
exploited in practice by censors [4]. We thus propose a powerful
property called Traffic Shaping, which requires that protocols be
capable of producing ciphertexts of arbitrary lengths on command.

We prove relations among our novel FEP security definitions and
existing notions of confidentiality and integrity. Our analysis of
existing FEPs indicates that none of them satisfies our notions, and
so we construct a protocol and prove that it does. These results are
given in the datastream setting, which models a protocol that uses
an underlying reliable, byte-oriented transport such as TCP. We
subsequently give definitions and related results in the datagram
setting, which models the use of an unreliable transport such as
UDP, and we present a provably secure FEP in it as well.

Our theoretical results are inspired by observing persistent prob-
lems in real-world FEP deployments and our work provides con-
crete guidance for future FEP development. Our security definitions
provide explicit security goals for FEPs to satisfy, and allow FEP
maintainers to prove their protocols secure. Our Traffic Shaping
notions give FEP designers a length obfuscation capability that
is maximally flexible and practical to implement. In addition our
definitions of secure close functions highlight the importance of
carefully implementing connection closures, and explicitly pro-
vides a narrow set of possible close behaviors which do not reveal
metadata unnecessarily.

Finally, we analyze a wide variety of existing FEPs under our
proposed security definitions, including the previously mentioned
Shadowsocks [47], obfs4 [34], and VMess [50] protocols. We exam-
ine their source code and documentation, and we run experiments
to measure their error responses and message sizes. Our results
indicate that nearly all of them do produce outputs that are indis-
tinguishable from randomness, satisfying our passive FEP security
definition. However, among the datastream protocols, their channel
closures in response to errors make them identifiable, and they con-
sequently fail our active FEP security definition. Our experiments
further uncover integrity failures in V2Ray (the system providing
the VMess protocol [40]). Moreover, all of the FEPs exhibit unique
minimummessage sizes, which we both predict via source-code anal-
ysis and verify experimentally. The catalog we produce of channel
closures and minimum message sizes provides a new method by
which existing FEPs can be individually identified and thus blocked.
It also supports our proposed security definitions, which normalize
channel closures and preclude minimum message sizes.

The main contributions of our paper are thus as follows. First,
we present security definitions for datastream FEPs, compare them

to existing security definitions, and provide a provably secure data-
stream FEP construction. Second, we similarly provide and ana-
lyze datagram FEP definitions, and we provide a provably secure
datagram FEP. Third, we evaluate many existing FEPs against our
security definitions, uncovering novel identifying features in both
error-induced channel closures and minimum message sizes.

This paper improves and expands on an early version of this
work [20] by including a more developed notion of close functions,
security definitions and a construction in the datagram setting,
analyses of relations between the new security notions and existing
ones, and an analysis of and experiments on existing FEPs. The full
version of this work [21] also contains appendices with proofs and
additional details.

2 Background and Preliminaries
We present the notation, primitives, and concepts required to de-
scribe our constructions, definitions, and counterexamples.

We use 𝜖 to denote the empty byte string and 𝑠 ∥𝑡 to denote
the concatenation of two byte strings 𝑠 and 𝑡 . We use uppercase
variables for lists, and 𝐿𝑗 denotes the 𝑗th item of list 𝐿. Given a list
of byte strings 𝐿 we denote its in-order concatenation by ∥𝐿. We
use [] to denote the empty list. Rand(𝑛) denotes a function that
produces a uniformly random string of 𝑛 bytes, and Append(𝐿, 𝑥)
returns a new list constructed by appending the element 𝑥 to a list
𝐿. Given a byte string 𝑥 , we use 𝑥 [𝑖 .. 𝑗] to denote the substring from
byte 𝑖 to byte 𝑗 , inclusive, with indexing beginning at 1. We use
the binary % operator to mean “without the prefix”; for example,
abcd%ab = cd. J𝑎, 𝑏K denotes the longest common prefix of byte
strings 𝑎 and 𝑏. ⪯ (≺) indicates (strict) string prefixes. |𝑥 | denotes
the length of 𝑥 in bytes. 𝑥

R← 𝑆 denotes sampling an element 𝑥
uniformly at random from finite set 𝑆 .

We use a generic AEAD encryption scheme for our chan-
nel constructions in Sections 5.1 and 8.1, as well as certain
counterexamples. The scheme consists of a triple of algorithms
Gen(𝜆), Enc𝑘 (nonce,𝑚, ad), Dec𝑘 (nonce, 𝑐, ad), as defined by Ro-
gaway [44], with both the AUTH and PRIV properties for integrity
and confidentiality, respectively. In the remainder, we drop the as-
sociated data argument since it is not necessary for our work. We
denote decryption errors with the distinguished error symbol ⊥Dec.
We assume that the scheme satisfies IND$-CPA [45], meaning that
its ciphertext outputs are indistinguishable from random bytes.
We further assume that the scheme has a fixed nonce size, ℓNonce,
a fixed authentication tag size ℓTag and assume that the scheme
has a fixed overhead associated with encryption in the form of
an additive constant, which we refer to as ℓOverhead meaning that
|Enc𝑘 (nonce,𝑚) | = |𝑚 | + ℓOverhead for any valid key 𝑘 , nonce
nonce, and message𝑚. We call schemes with this property length

additive. We note that this property implies length regularity; that
is, input plaintexts of the same length produce output ciphertexts
of the same length. Standard AEAD schemes, such as AES-GCM,
are believed to satisfy all of the properties we assume.

Datastream channels are intended to model the interface pro-
vided by TCP, where correctness requires, and only requires, that
the sent bytes are all received and in the same order that they were
sent. Datastream channels are connection-based and can be closed
explicitly (e.g., with a TCP FIN packet), observably terminating
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the connection. Messages sent in the datastream model may be
fragmented, with internal buffering behavior, network conditions,
and adversarial manipulation all affecting the size of the messages
that are sent and received, which can be distinct from the sizes of
the messages explicitly passed to the channel interface at the level
of an application. Datagram channels are intended to model the
interface provided by the UDP and IP protocols, where messages
can arrive out of order, fail to arrive at all, or arrive multiple times,
and all messages have an explicit length.

LetM = {0, 1}∗ be the plaintext message space for a channel. We
use ⊥ as another distinguished error symbol (i.e., ⊥ ∉M), which
will indicate an error in the channel operation.

Traffic analysis [42] is used by a network adversary to infer sen-
sitive information about the metadata (e.g., the sender or receiver)
or content of encrypted traffic. Modern traffic analysis techniques
rely on many features to make these inferences, including timing
data, plaintext message headers, protocol control messages, and
message lengths. Traffic shaping [6, 11, 22, 55], used in the fields
of anonymous communication, network privacy, and censorship
circumvention, frustrates traffic analysis by changing the timing,
number, and lengths of the messages.

3 Data Stream Channels
We present security notions for Fully Encrypted Protocols in the
datastream setting using the model of Fischlin et al. [24]. We make
two major additions to this model that are important in FEP context.
First, we allow the sender to indicate the desired length of the output
ciphertext, which enables Traffic Shaping for metadata protection.
Second, we allow the receiver to close the channel in response to
an input ciphertext, which models this potential information leak.

3.1 Channel Model
A datastream channel consists of three algorithms:

(1) (st𝑆 , st𝑅) ← Init(1𝜆), which takes a security parameter
𝜆 and returns an initial sender state st𝑆 and receiver state
st𝑅 .

(2) (st′
𝑆
, 𝑐) ← Send(st𝑆 ,𝑚, 𝑝, 𝑓 ) which takes a sender state

st𝑆 , a plaintext message𝑚, an output length 𝑝 , and a flush
flag 𝑓 , and returns an updated sender state st′

𝑆
and a (possi-

bly empty) ciphertext fragment 𝑐 .
(3) (st′

𝑅
,𝑚, cl) ← Recv(st𝑅, 𝑐) which takes a receiver state

st𝑅 and a ciphertext fragment 𝑐 , and produces an updated
receiver state st′

𝑅
, a plaintext fragment 𝑚, and a flag cl

indicating whether the channel is to be closed.
These algorithms provide a unidirectional communication channel
from the sender to the receiver. To use a channel, Init is called to
produce the initial states. States st𝑆 and st𝑅 should be shared with
the sender and receiver, respectively, using an out-of-band process.
Such states may, for example, include a shared symmetric key or
public/private keypairs for each party.

The sender calls Send to send a message𝑚 ∈ M to the receiver.
Note that the correctness requirement will not guarantee that the
output ciphertext 𝑐 contains all of𝑚 (i.e., plaintext fragmentation
is allowed), nor that it is even a full ciphertext (i.e., ciphertext
fragmentation is allowed). Thus the sender will be allowed to buffer
inputs, such as for performance reasons. Moreover, 𝑐 might in fact

contain multiple ciphertexts, in the sense that Recv may need to
perform multiple decryption operations to obtain all the contained
plaintext. The output length 𝑝 will be used to support traffic shaping.
The flush flag 𝑓 , if set, forces the output of all messages provided
as input to a Send call up to the given call.

The receiver calls Recv on a received ciphertext to obtain the sent
plaintext. Correctness will require that Recv can take as its inputs
a fragmentation or merging of previous outputs of Send. Thus the
receiver will also be allowed to buffer inputs so that it can produce
the sent plaintext once sufficient ciphertext fragments are received.
The output message𝑚 may contain errors (i.e.,𝑚 ∈ {0, 1,⊥}∗). If
the close flag cl is set, that indicates that the receiver actively closes
the channel after the given Recv call (e.g., by sending a TCP FIN).

3.2 Correctness
A channel should be considered correct if it delivers the data from
the sender to the receiver in the absence of malicious interference.
As given by Fischlin et al. [24], datastream correctness requires that
the plaintext message bytes produced by Recv should match the
message bytes given to Send if the ciphertext bytes are correctly
delivered from Send to Recv. This requirement tolerates arbitrary
fragmentation of the plaintexts and ciphertexts. However, we add
to this correctness notion a requirement related to channel closures.

The inclusion of closures raises the possibility of a trivial cor-
rect channel that performs no useful data transfer and instead just
immediately closes the channel. However, we also want to allow
the possibility that the receiver does close the channel for a reason
such as some plaintext command being received or a limit on re-
ceived data being reached. To rule out the former while allowing
the latter, we introduce the notion of a close function and use it
to parameterize correctness. A close function C is a randomized
function that takes as input a sequence of channel operations (i.e.,
function inputs and outputs starting with Init and then including
Send and Recv calls) ending in a final Recv call. It outputs a bit
indicating if that last call should set its close output. We use C ≡ 0
as a default close behavior, i.e., the channel is never closed.

Our correctness requirement is as follows:

Definition 1. Let 𝑆 be a sequence of channel operations, starting

with Init and followed by (possibly interleaved) calls to Send and

Recv. Assume each Send or Recv call receives as input the state

produced by its previous invocation (or the output of Init on the first

such call). Let 𝑛𝑠 be the number of Send calls and 𝑛𝑟 be the number

of Recv calls. Let 𝑀 , 𝑃 , and 𝐹 be lists containing the inputs to the

Send calls, 𝐶 be a list of the Send outputs, 𝐶′ be a list of the Recv

inputs, and𝑀′ and CL be lists of the Recv outputs. A channel satisfies

correctness with respect to close function C if, for all such sequences

𝑆 where

f
𝐶′ ⪯

f
𝐶 , the following properties hold:

(1) Stream Preservation:
f
𝑀′ ⪯

f
𝑀

(2) Flushing: If 𝐹𝑛𝑠 = 1 and
f
𝐶′ =

f
𝐶 , then

f
𝑀′ =

f
𝑀 .

(3) Close Coherence: For any 𝑖 ∈ [1..𝑛𝑟 ], if CL𝑖 = 1, then for any

𝑗 with 𝑛𝑟 ≥ 𝑗 > 𝑖 , (𝑀′
𝑗
, CL𝑗 ) = (𝜖, 0).

(4) Close Correctness: If the last channel operation is Recv, the

distribution of its close output, given its inputs, is identically

distributed to that of C on 𝑆 .
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The Stream Preservation property ensures that delivered output
bytes are always some prefix of the plaintext input bytes. The
Flushing property enforces that if the flush flag is given, then all
the plaintext input bytes are output by Send. Close Coherence
ensures that a channel is closed only once and that Recv outputs no
messages afterwards. Close Correctness enforces that the channel
implements the externally supplied close behavior C . The first
two requirements of our correctness definition coincide with the
correctness definition of Fischlin et al. [24].

3.3 Secure Close Functions
While for correctness we make no assumptions about the desired
channel-close behavior, for security we will want to limit it in some
ways. Arbitrary close behavior may leak secret information. For ex-
ample, a close function might close the channel if a certain plaintext
byte sequence is received, which would violate confidentiality.

We therefore define a secure close function, which will prevent
closures from leaking any information beyond what is implied by
the stream of sent bytes. We require that a secure close function be
able to be expressed as a function taking the following inputs: (1)𝐶 ,
a concatenation of the list of the ciphertexts produced by Send calls;
(2) 𝐶′, the list of the ciphertexts given as inputs to Recv calls; (3)
CL, the list of the channel-close outputs of Recv calls; and (4) 𝑐 , the
final ciphertext input to Recv. As with all close functions, a secure
close function returns a bit indicating if the channel should close. A
secure close function must also be a probabilistic polynomial-time
function. With its limited inputs and computational complexity, a
secure close function not only prevents closures from leaking addi-
tional information beyond what is implied by the Send outputs, it
further restricts that leakage to that implied by their concatenation.
This choice prevents closures from revealing boundaries between
Send outputs, which can be hidden from real-world network adver-
saries due to fragmentation below the application layer. Note that,
although a passive adversary can observe the ordering of Send
and Recv calls, we need not give that information to a secure close
function, as the receiver itself cannot observe that ordering and
thus could never realize any close function that depends on it.

In addition to preventing the leakage of plaintext data, secure
close functions also prevent leaking certain metadata. For example,
they preclude closing as soon as an error is detected in a protocol
with variable-length ciphertexts, which would reveal some of the
internal structure of the protocol messages, as two Send outputs
are indistinguishable to a secure close function from a single Send
output of the same total length due to their concatenation in the
input. Such a behavior is frequently observed in real-world FEPs,
such as obfs4 and one direction of Shadowsocks (see § 9).

Despite their restrictions, secure close functions can still express
interesting and useful behavior. For example, they include closures
that occur after receiving some maximum amount of data. They
also allow for closures at some point after an error is introduced,
for example, after a modified byte is received and the total bytes
received is a multiple of 1000 (i.e., the strategy employed by the
interMAC protocol [12]).

Finally, secure close functions are realistic. Both academic and
real-world protocols have close behaviors which can, in whole or

in part, be realized by a secure close function, such as the fixed-
boundary closures of InterMAC [2] and the never-close behavior
of Shadowsocks in one direction [47]. We also observe a real-world
attempt, in the VMess protocol [50], to obscure when ciphertext
errors are detected by randomizing the timing of a subsequent clo-
sure, which doesn’t quite satisfy secure closures and consequently
leaks metadata (see § 9).

3.4 Confidentiality and Integrity Definitions
We adopt several datastream confidentiality and integrity defini-
tions from Fischlin et al. [24]. We use IND-CPFA/IND-CCFA for
passive/active indistinguishability (i.e., against chosen plaintext/ci-
phertext fragment attacks). We use INT-PST/INT-CST for integrity
against plaintext/ciphertext stream manipulation. We use these
notions without alteration beyond the new function signatures
associated with our channel model (i.e., adding the Traffic Shaping
parameter 𝑝 and close-flag 𝑓 to the inputs of Send and outputs of
Recv, respectively).

We also introduce a new passive confidentiality notion that
includes adversarial observation of closures. The modified notion,
IND-CPFA-CL, gives a receiving oracle to the adversary that only
returns channel closures. Moreover, as the adversary is passive,
the definition requires that the adversary correctly deliver to the
receiving oracle the ciphertext bytestream output produced by the
sending oracle. IND-CPFA-CL is a confidentiality goal for FEPs, but
we do use standard IND-CPFA as a means to prove other properties.
See the full version [21] for a precise definition of IND-CPFA-CL.

3.5 Fully Encrypted Datastream Protocols
We introduce passive and active security notions for Fully En-
crypted Protocols in the datastream setting. The goal of these def-
initions is to ensure that protocols satisfying them do not reveal
protocol metadata through the observable bytes and channels clo-
sures. The passive definition is FEP-CPFA, or FEP security against
a chosen plaintext fragment attack, and the active definition is FEP-
CCFA , or FEP security against a chosen ciphertext fragment attack.
The active notion is implicitly parameterized by a secure close func-
tion, and we use FEP-CCFA-C to explicitly indicate security with
respect to the close function C . The definition for both notions is
as follows:

Definition 2. A channel satisfies FEP-𝑥 , for 𝑥 ∈ {CPFA,CCFA} if,
for any PPT adversaryA,

���𝑃 [
ExpFEP-𝑥,𝑏A (1𝜆) = 1

��𝑏 R← {0, 1}
]
− 1/2

���
is negligible in the security parameter 𝜆.

The security experiment used in this definition (Algorithm 1)
gives adaptive access to a sending oracle (Algorithm 2). That oracle
calls the Send function of the underlying channel and then returns
to the adversary either the output or the same number of genuinely
random bytes, depending on a secret random bit 𝑏. The adversary
is challenged to distinguish between observing the outputs of Send
and random byte strings of the same lengths. This experiment
captures a key goal of a passive FEP—that every byte sent should
appear random to the adversary.

In the active setting, the adversary is also given adaptive access to
a receiving oracle (Algorithm 3). The behavior of the oracle depends
on the secret bit 𝑏. If 𝑏 = 0, then the oracle calls the channel Recv.
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If the sending and receiving byte streams are still in sync (i.e., no
received byte differs from the byte in the same position in the sent
byte stream), then only the close flag from Recv is returned to the
adversary. If those byte streams are out of synchrony, then both the
output message and the close flag are returned. If the streams just
become out of sync, then the in-sync and out-of-sync components
are separated before returning any message produced out-of-sync
to the adversary (the logic largely follows the similar oracle in the
IND-CCFA definition of Fischlin et al. [24]). If 𝑏 = 1, the oracle
simply returns the empty string and the close flag prescribed by
the close function C .

For active security, the receiving oracle should not yield outputs
distinguishing the 𝑏 = 0 and 𝑏 = 1 cases. The 𝑏 = 1 case yields a
simple behavior, which the 𝑏 = 0 case only differs from if a non-
empty message is ever output or the prescribed close behavior is
not followed. The relevance of non-empty outputs to the FEP goal is
that they occur when modified messages yield valid outputs, which
may influence observable behavior of the receiver and thus reveal
metadata about the integrity features of the protocol. Because the
prescribed close behavior is a secure close function, conforming
to it ensures that the closures leak no information beyond what is
already revealed by the ciphertext byte sequence. Thus, if passive
security is already satisfied, active security ensures that only the
ciphertext lengths could potentially reveal protocol metadata.

Algorithm 1 ExpFEP-𝑥,𝑏A (1𝜆): FEP security experiment

1: (st𝑆 , st𝑅) ← Init(1𝜆)
2: 𝐶𝑆 ,𝐶𝑅,𝐶CL , sync ← [], [], [], 1

3: 𝑏′ ←
{
AO𝑏Send ( ) (1𝜆) if 𝑥 = CPFA
AO𝑏Send ( ),O𝑏Recv ( ) (1𝜆) if 𝑥 = CCFA

4: return 𝑏′ = 𝑏

Algorithm 2 O𝑏Send (𝑚, 𝑝, 𝑓 ): FEP sending oracle

1: (st𝑆 , 𝑐0) ← Send(st𝑆 ,𝑚, 𝑝, 𝑓 )
2: 𝑐1 ← Rand( |𝑐0 |)
3: 𝐶𝑆 ← Append(𝐶𝑆 , 𝑐𝑏 )
4: return 𝑐𝑏 to A

3.6 Traffic Shaping
The passive and active FEP security definitions essentially ensure
that only the ciphertext lengths can leak protocol metadata. Those
lengths can also reveal message data, as the length of a message may
in some settings be related to its contents. To enable full metadata
protection, our channel definition allows that a requested length
𝑝 can be provided to each call to Send. We say that channels that
provide the requested lengths satisfy Traffic Shaping:

Definition 3. A channel satisfies Traffic Shaping if, for any

state st𝑆 , message 𝑚, and integer 𝑝 ≥ 0, with (st𝑆 , 𝑐) ←
Send(st𝑆 ,𝑚, 𝑝, 𝑓 ), if 𝑓 = 0 then |𝑐 | = 𝑝 , otherwise |𝑐 | ≥ 𝑝 .

Note that, in this definition, if the flush flag is set then the desired
length may be exceeded, which allows for the case that there are a

Algorithm 3 O𝑏Recv (𝑐): FEP receiving oracle

1: if 𝑏 = 0 then
2: if sync = 0 then // already out of sync with Send
3: (st𝑅,𝑚, cl) ← Recv(st𝑅, 𝑐)
4: return (𝑚, cl) to A
5: else if (

f
𝐶𝑅)∥𝑐 ⪯ (

f
𝐶𝑆 ) then // in sync with Send

6: (st𝑅,𝑚, cl) ← Recv(st𝑅, 𝑐)
7: 𝐶𝑅 ← Append(𝐶𝑅, 𝑐)
8: return (𝜖, cl) to A
9: else // either deviating or exceeding Send outputs
10: if (

f
𝐶𝑅) ≺ J(

f
𝐶𝑅)∥𝑐, (

f
𝐶𝑆 )K then // partial sync

11: 𝑐̃ ← J(
f
𝐶𝑅)∥𝑐, (

f
𝐶𝑆 )K % (

f
𝐶𝑅) // sync part

12: (s̃t𝑅,𝑚, c̃l) ← Recv(st𝑅, 𝑐̃)
13: (st𝑅,𝑚, cl) ← Recv(st𝑅, 𝑐)
14: 𝑚′ ←𝑚 % J𝑚,𝑚K // out-of-sync output
15: else // none of 𝑐 in sync with Send outputs
16: (st𝑅,𝑚′, cl) ← Recv(st𝑅, 𝑐)
17: if (

f
𝐶𝑆 ) ⪯̸ (

f
𝐶𝑅)∥𝑐 or𝑚′ ≠ 𝜖 then

18: sync ← 0
19: 𝐶𝑅 ← Append(𝐶𝑅, 𝑐)
20: return (𝑚′, cl) to A
21: else // 𝑏 = 1, return empty string and desired closure
22: cl ← C (

f
𝐶𝑆 ,𝐶𝑅,𝐶CL , 𝑐) // produce close output

23: 𝐶𝑅 ← Append(𝐶𝑅, 𝑐)
24: 𝐶CL ← Append(𝐶CL , cl)
25: return (𝜖, cl) to A

large number of buffered message bytes that must be flushed. The
definition also only imposes a requirement for 𝑝 ≥ 0, which allows
channels freedom to implement alternate behaviors for negative 𝑝
values.

Traffic shaping enables protection of protocol metadata by set-
ting the 𝑝 inputs to values that are independent of the protocol
being used. For example, the 𝑝 values could all be set to a constant,
which would hide the number and sizes of metadata fields as well as
the length of the plaintext messages. This is similar to the strategy
used by the Tor protocol of putting all data into fixed-size cells to
prevent traffic analysis [15].

4 Relations Between Datastream Notions
In this section we present relations among our novel security no-
tions and previous security notions for datastream channels.

While our novel FEP definitions are designed primarily to en-
force that all output bytes appear indistinguishable from random,
we observe in this section that these properties actually imply stan-
dard cryptographic datastream security properties. In particular,
FEP-CCFA is a strong property that directly implies ciphertext
stream integrity, and FEP-CPFA alongside channel length regular-
ity (a minor property discussed below) imply passive confidentiality.
Finally, we highlight as a primary conclusion from this section the
observation from Figure 1 that a channel satisfying FEP-CCFA for
a secure close function and channel length regularity satisfies all
other security properties we identify.
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Figure 1: Relations between notions for correct datastream
channels that realize a secure close function C. Rectangles
and solid arrows are results from Fischlin et al. [24]; ellipses
and dashed arrows are novel notions and relations

Figure 1 summarizes our results relating datastream secu-
rity notions. First we include relevant notions and results from
Fischlin et al. [24] with solid lines and rectangles, which establishes
the result that the passive confidentiality notion (IND-CPFA) and
the integrity of ciphertexts (INT-CST), together with a new notion
ERR-PRED, which establishes the predictability of error symbols
that will be produced by Recv, imply their active confidentiality
notion IND-CCFA. CH-REG refers to Datastream Channel Length
Regularity (Definition 4). Since in our construction we do not use
error symbols, we for convenience include the notion ERR-FREE,
which refers to the property that Recv never produces in-band
error symbols and trivially implies ERR-PRED.

Below we give theorem statements for each relation in Figure 1,
with the proofs in the full version [21].

While our notions do not imply confidentiality, this is only be-
cause of the issue of ciphertext lengths, and we formalize this
intuition below. First, we define a length-regularity property for a
channel, where we require that the length of the outputs of Send
do not depend on the content of the messages.

Definition 4. Let 𝑀0
and 𝑀1

be 𝑛-length lists of messages

such that, for all 𝑖 , |𝑀0
𝑖
| = |𝑀1

𝑖
|. Let 𝑃 and 𝐹 be an 𝑛-length in-

teger sequence and an 𝑛-length boolean sequence. Let (st0
𝑆
,𝐶0

𝑖
) ←

Send(st0
𝑆
, 𝑀0

𝑖
, 𝐹𝑖 , 𝑃𝑖 ) and (st1𝑆 ,𝐶

1
𝑖
) ← Send(st1

𝑆
, 𝑀1

𝑖
, 𝐹𝑖 , 𝑃𝑖 ), where

in both cases Send is initialized with Init and is then called sequen-

tially as 𝑖 = 1..𝑛, updating its state with each call. A datastream

channel is length regular if, for any such𝑀0
,𝑀1

, 𝐹 and 𝑃 , and for

all 𝑖 , |𝐶0
𝑖
| = |𝐶1

𝑖
|.

Next, Theorem 1 shows that a length-regular channel satisfying
FEP-CPFA provides confidentiality.

Theorem 1. Suppose that a channel satisfies FEP-CPFA and further

that the Send function is length regular in the sense of Definition 4.

Then that channel satisfies IND-CPFA.

Theorem 2 shows that if a channel is correct and provides IND-
CPFA (the standard confidentiality notion), then it provides the
similar confidentiality notion with closures, IND-CPFA-CL.

Theorem 2. If a channel satisfies correctness for a given secure close

function C, and IND-CPFA, then it satisfies IND-CPFA-CL.

We show in Theorem 3 that FEP-CCFA by itself implies the
strong integrity notion INT-CST.

Theorem 3. If a channel satisfies FEP-CCFA , then it satisfies INT-

CST.

We give in Theorem 4 a general result showing sufficient con-
ditions for passive FEP security (FEP-CPFA) to imply active FEP
security (FEP-CCFA ). Note that the ERR-FREE condition means
that recv does not produce in-band errors.

Theorem 4. If a channel satisfies correctness for a given secure

close function C , FEP-CPFA, ERR-FREE, INT-CST, then it satisfies

FEP-CCFA-C .

Finally, we give some negative results showing that, similar
to IND$-CPA in the atomic setting, our datastream FEP security
notions do not imply and are not implied by confidentiality notions.

We observe that FEP-CPFA does not imply IND-CPFA. Even if
a channel satisfies FEP-CPFA, it may still embed plaintext infor-
mation in the length of ciphertext fragments it produces, violating
confidentiality. We give an explicit counterexample in the full ver-
sion [21].

We similarly observe that IND-CCFA and IND-CPFA do not
imply FEP-CPFA. To show that neither of these datastream confi-
dentiality notions implies FEP-CPFA, we simply observe that the
AEAD-based construction of Fischlin et al. [24] satisfies both of
them but includes unencrypted length fields to delimit ciphertext
block boundaries, clearly failing to satisfy FEP-CPFA.

5 A Datastream Fully Encrypted Protocol
In this section we give a construction for a Fully Encrypted Protocol
in the datastream setting, and we prove that it satisfies all of the
desired security properties. The key challenge in designing the con-
struction is to simultaneously achieve Traffic Shaping, correctness,
and security.

5.1 The Construction
We give a construction that satisfies all our security notions for the
secure close function C ≡ 0, presented in Figure 2. Our approach is
inspired by Shadowsocks, and is designed around producing pairs
of ciphertexts, the first of which is a “length block” which has a
fixed length, denoted ℓlen = 2 + ℓTag, and contains the length of the
subsequent “payload block”, which is limited to a length that can
be represented within two bytes. The payload block also contains a
two byte padding length field to denote internal (plaintext) padding.
We denote the largest payload block length as ol = 216 − 1 and
set il as the largest plaintext length that can fit within a payload
block (216 − 3 − ℓTag).

The Send function contains an input buffer buf for plaintext and
produces an output buffer obuf of ciphertext block pairs, outputting
fragments from this buffer as requested by the caller. When Send
is called, it first checks to determine whether it can return the
required number of bytes (determined by the conditional in Line
3 of Send, which checks if 𝑝 output bytes are available and 𝑓 = 0,
or if 𝑓 = 1 and the plaintext buffer is empty). If possible, Send
outputs the appropriate number of bytes from the output buffer
(𝑝 or |obuf |, depending on 𝑓 ). Otherwise, Send constructs a pair
of ciphertext blocks according to our scheme in Lines 7–18 and
calls itself which will result in termination or a further extension of
obuf and another recursive call. The ciphertexts are constructed by
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Figure 2: A Datastream Fully Encrypted Protocol

Init(1𝜆):
1: 𝑘 ←$ K
2: st𝑆 = (𝑘, 0, 𝜖, 𝜖)
3: st𝑅 = (𝑘, 0, 𝜖, 0)
4: return (st𝑆 , st𝑅)

Send(st𝑆 ,𝑚, 𝑝, 𝑓 ):
1: (𝑘, seqno, buf, obuf) ← st𝑆
2: buf ← buf∥𝑚
3: if ( |obuf | ≥ 𝑝) ∧ ((𝑓 = 0) ∨ (buf = 𝜖)) then
4: 𝑐 ← obuf [1..Max(𝑝, 𝑓 ∗ |obuf |)]
5: obuf ← obuf%𝑐
6: return (st𝑆 , 𝑐)
7: 𝑜 ← Min( |buf |, il) ⊲ Plaintext Length
8: ℓ𝑝 ← 0 ⊲ L8-12 calculates ℓ𝑝 , ℓ𝑐
9: ℓ𝑐 ← |Enc𝑘 (seqno, 0(2+𝑜 ) ) |
10: while ( |obuf | + ℓ𝑐 + ℓlen < 𝑝) ∧ (ℓ𝑐 ≠ ol) do
11: ℓ𝑝 ← ℓ𝑝 + 1
12: ℓ𝑐 ← |Enc𝑘 (seqno, 0(2+𝑜+ℓ𝑝 ) ) |
13: 𝑐 ← Enc𝑘 (seqno, ℓ𝑐 ) ⊲ Length Block
14: seqno ← seqno + 1
15: 𝑚′ ← ℓ𝑝 ∥(0ℓ𝑝 )∥buf [1..𝑜]
16: buf ← buf%buf [1..𝑜]
17: 𝑐 ← 𝑐 ∥Enc𝑘 (seqno,𝑚′) ⊲ Payload Block
18: seqno ← seqno + 1
19: obuf ← obuf∥𝑐
20: return Send(st𝑆 , 𝜖, 𝑝, 𝑓 )

Recv(st𝑅, 𝑐):
1: (𝑘, seqno, buf, fail) ← st𝑅
2: if fail = 1 then
3: return (st𝑅, 𝜖, 0)
4: buf ← buf∥𝑐
5: 𝑚 ← 𝜖

6: while |buf | ≥ ℓlen do
7: ℓ𝑐 ← Dec𝑘 (seqno, buf [1..ℓlen ]) ⊲ Decrypt Length Block
8: if ℓ𝑐 = ⊥Dec then
9: fail ← 1
10: return (st𝑅, 𝜖, 0)
11: else if |buf | ≥ ℓlen + ℓ𝑐 then
12: 𝑐′ ← buf [ℓlen + 1..ℓlen + ℓ𝑐 ]
13: buf ← buf%buf [1..1 + ℓlen + ℓ𝑐 ]
14: 𝑚′ ← Dec𝑘 (seqno + 1, 𝑐′) ⊲ Decrypt Payload Block
15: seqno ← seqno + 2
16: if 𝑚′ = ⊥Dec then
17: fail ← 1
18: return (st𝑅, 𝜖, 0)
19: ℓ𝑝 ← min(𝑚′ [1, 2], |𝑚′ | − 2) ⊲ Calculate Padding Length
20: 𝑚 ←𝑚∥𝑚′ [3 + ℓ𝑝 ..]
21: else
22: break
23: return (st𝑅,𝑚, 0)

encrypting as much of buf as possible, represented by the variable
𝑜 , and then filling in padding bytes if needed so that the block pair
has size 𝑝 or is the maximum size of ℓlen + ol.

The Recv function keeps a buffer of received ciphertext bytes
and waits to receive ℓlen bytes, then decrypts and parses the length
block to recover the length of the subsequent payload block. It
then waits until the full payload block has been received before
decrypting and returning the plaintext, stripping off the padding
length and any padding bytes. Recv checks for decryption errors
and enters a fail state if either block type fails to decrypt. Our
construction does not produce channel closures or error symbols.

We note that our construction generalizes in some ways. Our
buffering and padding approach can be easily adapted for other
FEP designs, such as obfs4 [34] and InterMAC [12], so that they
satisfy Traffic Shaping. Further, although timing is outside of our
model, an implementation could close the connection based on a
timeout, where the timeout must depend only on how much time
has elapsed since the last ciphertext fragment was received.

5.2 Properties
We show that our construction satisfies all of the desired properties
in Theorem 5, with the proofs contained in the full version [21].
Our general approach is to first show the channel satisfies the
three non-cryptographic properties: correctness, Traffic Shaping,
and channel length regularity. We then establish individually each

property required to apply Theorem 4: FEP-CPFA, INT-CST, and
ERR-FREE (which is trivial). Theorem 4 then implies the channel
satisfies FEP-CCFA, which (along with channel length regularity)
implies IND-CCFA, so we arrive at all of the desired datastream
channel properties established in the previous sections.

Theorem 5. If the AEAD scheme (Gen, Enc, Dec) in the construction

in Figure 2 satisfies IND$-CPA, INT-CTXT, and is length additive (see

Sec 2) then the channel construction satisfies correctness for the secure

close function C ≡ 0, Traffic Shaping, FEP-CCFA, INT-CST, and IND-

CCFA.

6 Fully Encrypted Datagram Transport
Protocols

In the datagram setting, messages are transmitted atomically (i.e.
without fragmentation). Implied in this property is that the length
of each message can be determined by the receiver, unlike in the
datastream model where messages can be arbitrarily fragmented or
merged. Even in benign circumstances, messages in the datagram
model may be delivered out of order or dropped. This settingmodels
the UDP transport protocol.

Let ℓin be the maximum number of bytes in an input message.
This number may vary with the channel (i.e. with the protocol), but
it is assumed that ℓin > 0. LetMℓin = ∪0≤𝑖≤ℓin {0, 1}8𝑖 be the space
of valid input messages. Thus, any message𝑚 with |𝑚 | ≤ ℓin is a
valid input while sending. Let 𝜖 be the “empty” message, that is, the
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message of length zero. Note that 𝜖 ∈ Mℓin . We assume that there
is a maximum number of bytes ℓout in deliverable outputs, which is
typically larger than ℓin. ℓout does not vary with the channel and
models the limitations of the underlying delivery mechanism (e.g.,
the maximum size of a UDP datagram). Let ⊥ be a distinguished
error symbol (i.e., an item distinct from other outputs), which can be
produced when sending or receiving a message, such as when the
message to send is too long or the received message is malformed.

We also introduce the distinguished symbol⊤ to indicate a “null”
message. This symbol is different from the empty message 𝜖 in
that it indicates no message rather than an empty message. We
introduce this symbol to distinguish “chaff” messages, which are
those sent purely to fool a network observer, from messages that
are intended to be delivered to the receiver. A special case of this
is when the sender requests an output length that is too small to
contain an authentication tag, which we want to support to provide
Traffic Shaping. ⊤ can be used as both an input while sending and
an output while receiving, and so to avoid ambiguity it is not in
Mℓin . ⊤ can be used as an input to produce a chaff message. If it is
produced as an output while receiving, the receiver should react as if
no message was received. This design choice is driven by our desire
to ensure that if the channel operates normally, the receiver does
not produce an error symbol. This combined with the requirement
that messages can be produced of arbitrary size by an honest sender
(because of Traffic Shaping), and the requirement thatmessagesmay
be dropped or re-arranged without error means that in certain cases,
malicious messages or errors introduced by an active adversary
will be indistinguishable from valid chaff messages, which required
changes to the Recv oracle in our security definitions, presented in
Algorithm 6.

The datagram model offers different challenges to defining and
achieving Fully Encrypted Protocols. Atomic messaging avoids the
necessity of communicating message length. However, the lack of
delivery guarantees means that each message must be individually
decryptable, which, for example, rules out using certain block-
cipher modes across messages. At the same time, however, the
Traffic Shaping requirement will require sending messages so small
they cannot even contain authentication tags, as mentioned.

6.1 Channel Model
The datagram channel model consists of the following algorithms,
which provide a unidirectional channel:

(1) (st𝑅, st𝑆 ) ← Init(1𝜆), which takes a security parameter 𝜆
and generates the sender and receiver state.

(2) (st′
𝑆
, 𝑐) ← Send(st𝑆 ,𝑚, 𝑝), which takes a sender state and

a plaintext message 𝑚, and a desired output length 𝑝 . Its
output st′

𝑆
is an updated sender state, and its output 𝑐 is

either a ciphertext or an error.
(3) (st′

𝑅
,𝑚) ← Recv(st𝑅, 𝑐), which takes a receiver state and

a ciphertext 𝑐 . Its output st′
𝑅
is an updated receiver state,

and its output𝑚 is either a plaintext message or an error.

6.2 Correctness
The correctness requirement differs significantly from the data-
stream setting due to the lack of reliable in-order delivery. In-
stead, the requirement should simply enforce that a message 𝑚

sent through Send and then Recv produces 𝑚 again. This basic
idea is complicated by the possibility that Send may yield an er-
ror. We allow for such errors in the following cases: (1)𝑚 is too
large (i.e., |𝑚 | > ℓin), (2) 𝑝 is too small for𝑚, and (3) 𝑝 is too large
(i.e., 𝑝 > ℓout). Definition 5 gives the correctness requirement for a
datagram channel.

Definition 5. Fix any sequence of datagram-channel operations

where the first call is to Init, the remaining are (possibly interleaved)

calls to Send and Recv, and the sender (receiver) state outputs are

correctly provided as inputs to the subsequent Send (Recv) call.

The datagram channel satisfies correctness if, for all such se-

quences, the following properties hold:

(1) Message Acceptance: For every𝑚 ∈ Mℓin ∪ {⊤}, there exists
some 𝑝𝑚 ≤ ℓout such that with (st𝑆 , 𝑐) ← Send(st𝑆 ,𝑚, 𝑝),
if 𝑝 ≥ 𝑝𝑚 or 𝑝 < 0, 𝑐 ≠ ⊥.

(2) Message Length: For every𝑚 ∈ Mℓin ∪{⊤}, with (st𝑆 , 𝑐) ←
Send(st𝑆 ,𝑚, 𝑝), if 𝑐 ≠ ⊥, |𝑐 | ≤ ℓout.

(3) Message Delivery: For any Send call with input𝑚 ∈ Mℓin ∪
{⊤} and output (st𝑆 , 𝑐), where 𝑐 ≠ ⊥, any subsequent Recv
call with input 𝑐 must have output either𝑚 or ⊥, and the first
such call must have output𝑚.

6.3 Traffic Shaping
As with datastream channels, we would like our datagram-based
protocol to support Traffic Shaping by changing the length of its
output messages. The desired output length is specified by the
Send parameter 𝑝 . We require Send to output 𝑝 bytes as long
as 𝑝 is large enough to accommodate the desired message and
does not exceed the maximum datagram size ℓout. In particular, for
the null message ⊤, values 0 ≤ 𝑝 ≤ ℓout should yield an output
ciphertext of length 𝑝 (𝑐 might be meaningless randomness if 𝑝
is too small to accommodate ciphertext metadata such as a tag or
nonce). Definition 6 gives our precise Traffic Shaping notion in the
datagram context.

Definition 6. A datagram channel satisfies Traffic Shaping if,
for any state st𝑆 produced by Init or a subsequent Send call, any

message𝑚 ∈ Mℓin ∪⊤, and any integer 𝑝 ≥ 0, the following hold for
(st′

𝑆
, 𝑐) ← Send(st𝑆 ,𝑚, 𝑝):

(1) If 𝑐 ≠ ⊥ and 𝑝 ≥ 0, then |𝑐 | = 𝑝 , and

(2) If𝑚 = ⊤ and 𝑝 ≤ ℓout, then 𝑐 ≠ ⊥.

Note that this definition places no constraints on the channel
output when 𝑝 is negative. Therefore, a client may turn off Traffic
Shaping by using 𝑝 < 0.

6.4 Security Definitions
Providing security definitions for fully encrypted protocols is sim-
pler for datagram protocols than for datastream protocols, largely
because the correctness requirement does not require tolerating
plaintext and ciphertext fragmentation. As with datastream proto-
cols, our new definitions for FEPs are distinct from existing security
notions for confidentiality and integrity, and we therefore present
and discuss those existing notions as well. All our security notions
are with respect to a probabilistic polynomial-time (PPT) adversary.
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6.4.1 Confidentiality and Integrity definitions. We adopt confiden-
tiality and integrity definitions from Bellare and Namprempre [8].
We require only slight modifications to adapt them to our stateful
communication channel. Details appear in the full version [21].

For confidentiality, we use the IND-CPA and IND-CCA defini-
tions, which provide security with respect to a passive and active
adversary, respectively. In both definitions, the adversary is given
adaptive access to a sending oracle, which makes use of the Send
function of the underlying channel. In IND-CCA security, the ad-
versary also has adaptive access to a receiving oracle, which uses
the channel’s Recv function. The sending oracle requires the adver-
sary to submit pairs of equal-length messages, and it outputs the
encryption of one of them, depending on a secret random bit 𝑏. The
receiving oracle only returns a decryption of the given ciphertext if
it was not an output of the sending oracle and if the decryption is
neither ⊥ nor ⊤. The channel provides confidentiality if the adver-
sary cannot guess the secret bit 𝑏 with probability non-negligibly
different than random guessing.

For integrity, we use INT-CTXT, which challenges the adversary
to produce an unseen ciphertext that successfully decrypts. The ad-
versary is given adaptive access to a sending oracle and a receiving
oracle, which make use of the channel’s Send and Recv functions,
respectively. The channel provides integrity if the adversary cannot
send the receiving oracle a ciphertext that was not produced by the
sending oracle but does successfully decrypt to a non-null output,
except with negligible probability.

6.4.2 Fully Encrypted Datagram Protocols. Our novel security defi-
nitions in the datagram setting are FEP-CPA and FEP-CCA, which
define security for Fully Encrypted Protocols against a chosen plain-
text attack (i.e. a passive adversary) and against a chosen ciphertext
attack (i.e. an active adversary), respectively:

Definition 7. A channel satisfies FEP-𝑥 , for 𝑥 ∈ {CPA,CCA}
if, for a security parameter 𝜆 and PPT adversary A,���𝑃 [

ExpFEP-𝑥,𝑏A (1𝜆) = 1
��𝑏 R← {0, 1}

]
− 1/2

��� is negligible in 𝜆.

In the related security experiment (Algorithm 4), the adversary is
given adaptive access to a sending oracle (Algorithm 5). That oracle
either faithfully returns the output of the channel Send operation
or replaces that output with the same number of uniformly random
bytes, depending on a randomly selected bit 𝑏. The adversary is
thus challenged to distinguish between the outputs of Send and
random messages of the same length.

In the active security definition, FEP-CCA, adaptive access to a
receiving oracle is added (Algorithm 6). That oracle also depends on
the secret bit 𝑏. If 𝑏 = 0, it returns the output of Recv called on the
given ciphertext, except if the ciphertext was an output of Send or if
it fails to decrypt to a non-null plaintext. If 𝑏 = 1, the oracle always
returns ⊥. The active adversary can thus also attempt to get Recv
to produce anything but ⊥, which can only happen if 𝑏 = 0 and if
the adversary submits a novel, valid, and non-null ciphertext. This
definition models potential information leaks through observable
behavior of the recipient that would receive those outputs. Note that
null outputs are excepted because, in general, the output of Send
may be required to be of a size too small to contain an authentication
tag, making small outputs forgeable.

Algorithm 4 ExpFEP-𝑥,𝑏A (1𝜆)

1: (st𝑆 , st𝑅) ← Init(1𝜆)
2: 𝐶 ← ∅

3: 𝑏′ ←
{
AO𝑏Send-DG ( ) (1𝜆) if 𝑥 = CPA
AO𝑏Send-DG ( ),O𝑏Recv-DG ( ) (1𝜆) if 𝑥 = CCA

4: return 𝑏′ = 𝑏

Algorithm 5 O𝑏Send-DG (𝑚, 𝑝)

1: (st𝑆 , 𝑐0) ← Send(st𝑆 ,𝑚, 𝑝)
2: if 𝑐0 = ⊥ then
3: return ⊥
4: 𝑐1 ← Rand( |𝑐0 |)
5: 𝐶 ← 𝐶 ∪ {𝑐𝑏 }
6: return 𝑐𝑏

Algorithm 6 O𝑏Recv-DG (𝑐)

1: if 𝑏 = 0 then
2: (st𝑅,𝑚) ← Recv(st𝑅, 𝑐)
3: if 𝑐 ∉ 𝐶 ∧𝑚 ≠ ⊥ ∧𝑚 ≠ ⊤ then
4: return𝑚

5: else
6: return ⊥
7: return ⊥

7 Relations Between Datagram Notions
In this section we present relations between our security notions
for datagram channels in Theorems 6, 7, and 8. Proofs of these
relations appear in the full version [21]. As with the datastream
notions, our datagram security definitions do not imply and are not
implied by confidentiality properties because plaintext values may
be leaked via the ciphertext lengths.

Theorem 6. If a Datagram channel satisfies FEP-CCA, it satisfies

INT-CTXT.

Theorem 7. If a Datagram channel satisfies FEP-CPA and INT-CTXT,

it satisfies FEP-CCA.

To obtain confidentiality from our datagram FEP notions, we
require a property that ensures message lengths do not leak infor-
mation about the plaintext content. We define Datagram Channel
Length Regularity in Definition 8.

Definition 8. Let𝑀0
and𝑀1

be 𝑛-length sequences of elements

in Mℓin ∪ {⊤} such that, for all 𝑖 , either |𝑀0
𝑖
| = |𝑀1

𝑖
| or 𝑀0

𝑖
=

𝑀1
𝑖
= ⊤. Let 𝑃 be an 𝑛-length integer sequence. Let (st0

𝑆
,𝐶0

𝑖
) ←

Send(st0
𝑆
, 𝑃𝑖 , 𝑀

0
𝑖
) and (st1

𝑆
, 𝑐1
𝑖
) ← Send(st1

𝑆
, 𝑃𝑖 , 𝑀

1
𝑖
), where in

both cases Send is initialized with Init and is then called sequentially

as 𝑖 = 1..𝑛, updating its state with each call. A datagram channel is

length regular if, for any such 𝑀0
, 𝑀1

, and 𝑃 , and for all 𝑖 , either

|𝐶0
𝑖
| = |𝐶1

𝑖
| or 𝐶0

𝑖
= 𝐶1

𝑖
= ⊥.

Theorem8. If a Datagram channel satisfies FEP-CCA and Datagram

Channel Length Regularity, it satisfies IND-CCA.
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8 A Fully Encrypted Datagram Construction
In the following section we introduce our datagram construction
of a Fully Encrypted Protocol, and we prove it satisfies satisfies
correctness, the desired security properties, and Traffic Shaping.

8.1 The Construction
We give a simple construction of a protocol that satisfies our two
obfuscation security definitions and Traffic Shaping for datagram
channels. To satisfy most of our security and obfuscation properties,
we can simply use atomic encryption and decryption since datagram
messages are atomic by construction. However, the Traffic Shaping
property presents a challenge: not all lengths are possible outputs
of an AEAD scheme, and since the messages are not ordered, they
must each include a nonce as well.

In our construction, we assume the same AEAD scheme from
Section 2. For simplicity, we further assume that Enc includes in its
outputs each nonce as a prefix of the ciphertext when it is called,
and that Dec extracts the first ℓNonce bytes from its input as the
nonce to use for decryption. Let ℓOverhead = ℓNonce + ℓTag represent
the encryption overhead since our construction uses fresh nonces
for each ciphertext. We give an explicit encoding scheme for our
message space into bytes as follows: we encode the null message
⊤ as a single zero byte, and prefix all other messages (including
the empty string 𝜖) with a leading 1 byte. We set ℓout = 65507
(the maximum size UDP payload length), and we include in our
message space all byte strings of length up to ℓin = ℓout−ℓOverhead−3,
reserving two bytes for the plaintext length and one for the message
type. We denote the length of a ciphertext containing the null
message as ℓnull = 1 + ℓOverhead. We abuse notation and write |𝑚 |
to mean both the size of𝑚 and the two byte unsigned integer that
represents that size, depending on the context.

Our protocol is stateless, so each function simply returns the
symmetric key 𝑘 as the new state after each call. The Send function
generates a fresh nonce, and if Traffic Shaping is off, directly applies
Enc to produce the datagram. If the desired output length 𝑝 is too
small for an authenticated message, we produce random bytes
(Lines 6–7). We produce arbitrary length chaff messages (Line 9) or
padded plaintext messages (Line 13), and return with an error if 𝑝
is too large to fit in a datagram or𝑚 is too large to fit within 𝑝 ≥ 0
(Line 10). Recv interprets all small messages as chaff, and then
decrypts larger messages, returning the plaintext, chaff symbol, or
error where appropriate.

8.2 Properties
We prove in Theorem 9 that our datagram construction satisfies
all of the desired properties presented in Section 6. The proofs are
in the full version [21]. Our approach is to establish correctness,
Traffic Shaping, datagram channel length regularity, FEP-CPA, and
INT-CTXT, and then apply the theorems from Section 7 to establish
the remaining properties.

Theorem 9. If the AEAD scheme (Gen, Enc, Dec) in the channel

construction in Figure 3 satisfies IND$-CPA, INT-CTXT, and length

additivity (see Sec 2) then the channel construction satisfies correctness

for Datagram channels, Traffic Shaping, FEP-CCA, INT-CTXT, and

IND-CCA.

9 Existing Fully Encrypted Protocols
Since our work is motivated the lack of security definitions for
existing Fully Encrypted Protocols, we identified a set of protocols
that make an attempt to appear fully encrypted above the trans-
port layer for analysis. Our goal in analyzing these protocols is to
determine if these protocols satisfy our definitions, and to what
extent they have identifying features that our security definitions
are designed to address. We excluded closed-source protocols but
note that many existing implementations of FEPs that do not appear
in our list nonetheless adapt the approach of one of the protocols
we analyze [37, 41, 49]. We did not perform a thorough audit of the
security engineering of the protocols’ implementations, which we
consider outside the scope of our paper.

9.1 Methodology
In each case we analyzed the protocol source code and documen-
tation (if available) in order to identify the protocol behavior. To
determine whether the protocols satisfy passive FEP security, we
examined if the protocol outputs were all either random bytes or
pseudorandom ciphertext. For active FEP security, we identified
whether these fragments or messages were also authenticated, and
for datastream protocols, whether the close behavior of the protocol
satisfied our definition of a secure close function.

Protocol source code and documentation also informed our analy-
sis of techniques for length obfuscation and of the minimum-length
messages of the protocols. We examined these protocol aspects to
understand how well Traffic Shaping was satisfied. Existing FEPs
typically accomplish length obfuscation with padding, where extra
bytes are added to messages. Padding can only increase the length
of the output for a given input, and thus we expect to find that
existing protocols possess minimummessage lengths that can serve
an undesirable identifying feature of the protocol. We determined
whether padding was included in the protocols and how it was
added by the code, and we confirmed the presence of padding in
the experiments described below. In addition, we identified pro-
tocol message formats and layouts from these sources, which we
used to form hypotheses on the minimum message lengths for
each protocol, which we verified via experimentation. We note
that the minimum lengths we determine technically apply to the
amount of data written to the socket buffer by a Send call, and the
network stack may further fragment the message. However, such
fragmentation is not common, and the amount written to the buffer
is typically the amount sent in a network packet (e.g., we observed
no fragmentation in our experiments).

We observed that channel-close behavior was rarely documented
and in practice varied significantly between implementations, and
so we relied almost entirely on our experiments to determine when
protocols terminated a connection. We note that many protocols
also include time-based close behavior, which we did not analyze.

Open-source FEPs are designed to be flexible, and so all protocols
in our list can be run under many configurations. Our primary goal
was to identify the intended behavior of the protocol designers un-
der recommended or default settings. Therefore, in our experiments
we selected defaults, used recommended settings, and followed of-
ficial examples to configure each protocol.
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Send(𝑘,𝑚, 𝑝):
1: nonce = Rand(ℓNonce)
2: if 𝑝 < 0 and𝑚 = ⊤ then
3: return (𝑘, Enc𝑘 (nonce, 0))
4: if 𝑝 < 0 and |𝑚 | ≤ ℓin then
5: return (𝑘, Enc𝑘 (nonce, 1∥|𝑚 |∥𝑚))
6: if 𝑚 = ⊤ and 𝑝 < ℓnull then
7: return (𝑘, Rand(𝑝))
8: if 𝑚 = ⊤ and ℓnull ≤ 𝑝 ≤ ℓout then
9: return (𝑘, Enc𝑘 (nonce, 0∥0𝑝−ℓnull ))
10: if 𝑝 > ℓout or |𝑚 | > 𝑝 − ℓOverhead − 3 then
11: return (𝑘,⊥)
12: pt = 1∥|𝑚 |∥0(𝑝−|𝑚 |−ℓOverhead−3) ∥𝑚
13: return (𝑘, Enc𝑘 (nonce, pt))

Recv(𝑘, 𝑐):
1: if |𝑐 | < ℓnull then
2: return ⊤
3: buf ← Dec𝑘 (𝑐)
4: if buf = ⊥Dec then
5: return ⊥
6: if buf [1] = 0 then
7: return ⊤
8: 𝑖 ← |buf | − buf [2, 3] + 1 ⊲ Two-byte unsigned int
9: return (𝑘, buf [𝑖 ..])

Init(1𝜆):
1: 𝑘 ← Gen(1𝜆)
2: return (𝑘, 𝑘)

Figure 3: Our datagram channel construction

Datastream Protocol Close Behavior FEP-CPFA FEP-CCFA Length Obfuscation Min Size
Shadowsocks-libev (request) Never ✓ ✓∗ None 35
Shadowsocks-libev (response) Auth Fail ✓ X None 35
V2Ray-Shadowsocks (request) Drain∗ ✓ X None 35
V2Ray-Shadowsocks (response) Auth Fail ✓ X None 35
V2Ray-VMess Drain∗ ✓ X Padding 18†
Obfs4 Auth Fail ✓ X Padding 44∗

OpenVPN-XOR Auth Fail X X None 42†
Obfuscated OpenSSH Auth Fail X X None 16
Obfuscated OpenSSH-PSK Auth Fail ✓ X None 16
kcptun Never ✓ X None 52†
Construction (Sec 5.1) Never ✓ ✓ Traffic Shaping 1
Datagram Protocol FEP-CPA FEP-CCA Length Obfuscation Min Size
Shadowsocks-libev ✓ ✓ None 55∗

Wireguard-SWGP (paranoid) ✓ ✓ Padding 75†∗

OpenVPN-XOR X X None 40†
Construction (Sec 8.1) ✓ ✓ Traffic Shaping 0

Table 1: Our definitions applied to FEPs. *See discussion for significant nuances. † The smallest message is a keepalive. ✓
We have strong evidence the protocol satisfies the definition from documentation, code, and our experiments (properties are
proven for our constructions). X We have demonstrated by experiment that the definition is not satisfied, or that fact is clear
from the protocol design.

Many assessed protocols are designed around a request-response
architecture, and thus their message format, cryptographic struc-
ture, and general behavior may differ depending on whether the
messages are outgoing (Client→ Server) or incoming (Server→
Client). Our protocol framework is unidirectional, and so we model
each of these directions as a distinct protocol, combining them only
when our results for both directions are identical.

9.2 Results
Our results appear in Table 1. For padding approaches, we include
only padding for the purpose of countering traffic analysis (e.g., not
padding required to align a plaintext message to a block boundary
before encryption), and padding that could apply to all messages
(e.g., not padding only in the initial handshake phase). We highlight
the following results:

(1) Nearly all existing FEPs satisfy passive FEP security, but no
datastream FEP satisfies active FEP security (Shadowsocks
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does in one direction). Also, the datastream FEPs are identi-
fiable to an active attacker based on their close behavior.

(2) No existing protocol, whether datastream or datagram, sat-
isfies Traffic Shaping, and all protocols are identifiable by
their minimum message length.

We summarize our results in general and highlight specific re-
sults of interest below, providing the detailed descriptions of our
methodology, analysis, and experiments in the full version [21].

We first describe the eight FEP implementations studied: (1) Shad-
owsocks [47] is a fully encrypted SOCKS5 proxy with many imple-
mentations and the ability to proxy both datastream and datagram
traffic. We examined the Shadowsocks-libev [53] implementation
in both TCP and UDP configurations. (2) We also studied a Shadow-
socks implementation in the censorship-circumvention software
suite V2Ray [40]. (3) VMess [50] is a custom FEP also implemented
inside V2Ray for censorship circumvention. (4) Obfs4 [34] is a FEP
designed for Tor [16]. (5) OpenVPN [35] is open-source VPN soft-
ware that functions in datastream or datagram mode, and there is a
well-known patch available designed to obfuscate its traffic called
the XOR patch [36]. (6) Obfuscated SSH is modification of OpenSSH
that fully encrypts its handshake messages, and it can be configured
with a Pre-Shared Key. (7) kcptun is a FEP designed to be reliable
and fast over very noisy networks. (8) Wireguard-SWGP [48] is a
proxy for Wireguard [18] that fully encrypts its traffic.

Datastream protocols largely terminate the connection imme-
diately when an authentication tag failed to validate (“Auth Fail”
in Table 1). This behavior cannot be realized by any secure close
function when the protocol ciphertext lengths are hidden (e.g., with
a variable-length ciphertext and an encrypted length field, as is the
case for Shadowsocks, VMess, Obfs4, and Obfuscated OpenSSH)
because this means the close function, without access to encryption
keys, must be able to identify a ciphertext boundary within the
concatenation of all ciphertexts fragments from the sender.

V2Ray protocols additionally include a “Drain” initial behavior
(the protocol changes this behavior later in the connection) which
upon decryption error delays terminating the connection until a pre-
determined number of total bytes have been received, randomized
based on a user and per connection. The drain approach does not
satisfy our notion of a secure close function, as it does not apply
if the pre-determined amount has been exceeded before the error.
Thus, the V2Ray protocols cannot satisfy FEP-CCFA.

Most datastream protocols satisfy FEP-CPFA. Only Obfuscated
OpenSSH, which transmits symmetric key material in the clear, and
the OpenVPN XOR patch, which doesn’t satisfy confidentiality [57],
do not. On the other hand, only Shadowsocks-libev in one direc-
tion has a close behavior compatible with FEP-CCFA: the server
holds the connection open indefinitely upon error as an intentional
design feature. It does report errors to the application layer, though,
technically violating the FEP-CCFA definition. However, this behav-
ior could plausibly satisfy FEP-CCFA with a reasonable and minor
modification to the notion (allowing errors) or to the transport
protocol (suppressing errors).

Most datagram protocols satisfy FEP-CCA, since there are no
closures in this setting. Only OpenVPN-XOR does not, and it also
violates FEP-CPA in this setting as well.

Few protocols include padding of any sort (only Obfs4, VMess,
and Wireguard-SWGP). The Shadowsocks datastream protocol had
the same minimum message length in both implementations. How-
ever, other protocols varied significantly, with several (kcptun,
OpenVPN-XOR, VMess, and Wireguard-SWGP) sending minimum-
length messages as keepalives, which are thus transmitted when-
ever the application is quiescent. Such keepalives represent a novel
identifying feature for FEPs, and they highlight the value of Traffic
Shaping. Datastream FEPs typically had higher minimum message
lengths because they all included a per-message nonce.

Three determinations of the minimum length require some care:
Obfs4 servers upon initialization select a random set of random
possible output lengths, which persists. Thus, each Obfs4 server
has its own minimum message length, with 44 bytes as the abso-
lute minimum across all such setups. Shadowsocks-libev in the
datagram setting can send messages of length 52 if directed to
produce messages with invalid addresses. Wireguard-SWGP has
a minimum length that depends on the configured MTU of the
protocol, which the documentation suggests be set carefully, but
the minimum message length is 75 with the default MTU of 1500.

We also experimentally observed that the protocols in the V2Ray
framework fail to satisfy datastream integrity (and thus cannot sat-
isfy FEP-CCFA), dropping isolated messages silently when certain
ciphertext bytes were modified in transit. We reported this as a
security vulnerability to the project maintainers on January 4, 2024
and the issue was resolved in version 5.14.1.2

10 Discussion
Modeling limitations. Our modeling choices limit our results in

some ways. We follow existing models for stateful communication
channels, which, for simplicity, provide unidirectional rather than
bidirectional communication and omit time. Bidirectional commu-
nication can be achieved within our model by composing two uni-
directional channels, one in each direction. However, such channels
are not allowed to share state, including keys and other initializa-
tion parameters, and not observing this restriction can violate the
security guarantees. Such a limitation reduces potential efficiency
over the truly bidirectional setting. Similarly, omitting time from
our model precludes some convenient protocol features, such as
timeouts leading to channel closures and time-based replay protec-
tions. This limits both the design of new protocols and the analysis
of existing ones. However, security models have been designed
that include time [5, 14], and our models and constructions can be
extended to work within such a setting.

FEP indistinguishability. The ability of an adversary to distin-
guish FEPs from one another (as opposed to distinguishing them
from non-FEPs) is an important security concern. Identifying the
use of a specific FEP, implementation, or software version enables
an adversary to deploy and tailor exploits. It can also enable user
profiling, which may be particularly sensitive in the context of
censorship circumvention, where software distribution may be per-
formed via physical or social networks, and so the use of a specific
implementation or software version can imply membership in such
a network.
2The bug was caused by a failure to propogate errors properly when decryption fails
during the data transport phase.



Bytes to Schlep? Use a FEP: Hiding Protocol Metadata with Fully Encrypted Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Unfortunately, as we have shown in Section 9, existing FEPs and
their implementations can be effectively distinguished in practice
because of a failure to satisfy one or more of the security definitions
we present in this work. We consider our definitions a major step
towards articulating and achieving this goal for FEPs, but using
them to guarantee FEP indistinguishability requires some further
determinations to be made that we consider outside the scope of
our paper. In particular, a secure close function must be selected and
a Traffic Shaping schedule or distribution must be determined. Fur-
ther, some variability in these selections may be necessary among
FEPs for practical functionality and efficiency reasons.

Secure close functions. Secure close functions can present practi-
cal concerns since they constrain protocol behavior. For example,
they may require channels to leave connections open indefinitely
on error (e.g., C ≡ 0 as in Shadowsocks and our construction),
deploy a less-efficient message format (e.g., the fixed-length cipher-
texts of InterMAC [12]), or terminate connections even if errors
are not introduced into the ciphertext stream (e.g., if connections
are closed after a fixed number of bytes or after a fixed byte se-
quence appears in the random ciphertext stream). However, some
developers have already chosen in practice to make these tradeoffs
in favor of security, both in Shadowsocks [53], which is the most
widely deployed FEP in use, and libInterMAC [2], which has been
thoroughly evaluated for efficiency. Additionally, the secure use of
timeouts (which are outside our current model) to close connections
may alleviate these concerns in some cases.

Traffic Shaping. The Traffic Shaping property presents a trade-
off between security against traffic analysis and efficiency, to be
set as appropriate for a given application. A thorough analysis of
how best to use Traffic Shaping in particular use cases is impor-
tant but requires the use of very different tools than we apply in
this work. One simple option would be to send fixed-size messages
at a constant rate, requiring predictable bandwidth and provid-
ing a maximum message latency. Alternately, one could sample
message times and sizes from a known distribution for a target ap-
plication (the transported application to maximize efficiency, or an
uncensored application in the context of censorship circumvention).
The main goal of our Traffic Shaping definition is to formalize a
maximally flexible functionality at the transport layer, providing a
powerful interface that can be used to make traffic from any two
distinct applications appear as similar as efficiency goals allow.

Recommendations for FEP designers. We intend our results to
inform the design of existing and future FEPs. Many of the existing
FEPs could satisfy our novel security definitions with straightfor-
ward changes to the message formats and protocol implementation.
We make the following specific recommendations regarding the
two novel protocol features we introduce, secure close functions
and Traffic Shaping:
(1) We suggest ideally adopting the close function of InterMAC,

where the receiver closes after error only at a multiple of𝑛 bytes,
for constant𝑛, by adding aMAC at those positions. These MACs
would be in addition to any MACs needed to support variable-
length records and could occur at relatively low frequency,
where such frequency should be chosen to be acceptable across
applications and protocols to maximize FEP indistinguishability

(e.g. every 10K bytes). We further suggest closing the connection
after a certain amount of time has passed with no ciphertext
received, which is technically outside our model. The combi-
nation of these close behaviors would permit connections to
eventually close after an error is observed without adding too
much bandwidth overhead. An alternative suggestion is simply
to adopt a connection timeout after not receiving any cipher-
text. This behavior does permit an active adversary to keep a
connection open by continually sending traffic, but it is a more
minor change to implement.

(2) To implement Traffic Shaping, datastream FEPs should be ex-
tended to buffer content that does not fit within the prescribed
output length 𝑝 and to produce padding when 𝑝 exceeds the
amount necessary for the message. Datagram FEPs should be
extended to include the use of null messages and to refuse to
send messages that cannot fit within the prescribed length. FEP
developers should thus implement Traffic Shaping, although
existing applications need not necessarily use it and instead
await more work on appropriate traffic patterns.

11 Related Work
We build on the model of Fischlin et al. [24] to study data streams
in the presence of fragmentation, a problem also been studied else-
where [1–3, 12]. Fragmentation is a problem for FEPs, as plaintext
length fields cannot be used. The notion of Boundary Hiding [12]
is related to but does not imply our FEP notions because, for one, it
does not enforce random-appearing outputs.

Some aspects of Fully Encrypted Protocols have been studied,
such as active probing [4, 26], and attacks on confidentiality [29, 38].
Much research has focused on detecting FEPs [27, 52, 56, 57] using
a variety of approaches. Fifield [23] outlined a series of implementa-
tion weaknesses in existing FEPs. Bernstein et al. [10] developed a
method to encode elliptic curve points as uniformly random strings.

On channel closures, Boyd and Hale [13] consider channels with
in-band intentional termination signals that generate channel clo-
sures, and Marson and Poettering [33] provide security definitions
for fully bidirectional channels. Hansen [28] and Albrecht et al. [2]
discuss similar issues to the channel closures we discuss in our work
around the difficulty of realizing active boundary hiding, where
applications themselves leak information to an adversary through
their behavior.

Fischlin et al. [25] analyze dTLS [43] and QUIC [31] in the data-
gram setting, considering especially robustness to message drops.
Our datagram model can also apply to other encrypted transport
protocols like IPSec [19]. Stateful encryption models similar to our
datagram model are given by Bellare et al. [7] and Kohno et al. [30].

Some FEPs designs have come from elsewhere than the open-
source community. Obfs4 [34] is based on Scramblesuit [54] and has
been forked under the new name Lyrebird [32]. InterMAC, which is
a near-FEP, has been both analyzed [12] and implemented [2]. The
IETF proposal for a Pseudorandom Extension of cTLS [46] suggest
a FEP encoding of TLS to improve protocol security and privacy
rather than for censorship circumvention.
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12 Conclusion and Future Work
A natural enhancement to our constructions would be a fully en-
crypted key exchange for forward secrecy. Obfs4 [34] uses Elliga-
tor [10] for this purpose, but it remains to prove its security as
well as investigate other techniques. Relatedly, one could formulate
a notion of forward metadata secrecy, where the FEP properties
may still be preserved even if a long-term key is compromised. In
addition, FEP notions should be explored in models where securely
creating shared state is not trivial but bidirectional communication
is possible.

There are also other practical concerns to consider. Active prob-
ing attacks are a common problem for real-world FEPs, which we do
not address in this work. We also do not optimize efficiency in our
FEP protocol constructions. Finally, while we introduce the Traffic
Shaping capability, we do not answer the distinct and important
question of how traffic should be shaped.
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