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Abstract

We consider the problems posed by routing flow in a network popu-

lated by self-interested agents. Standard node-cost and edge-cost network

models are compared and a mapping between them is described. The exis-

tence of Nash equilibria when flow cannot be split is established in several

cases. Braess’s paradox is shown to exist when the number of users is

finite and flow is unsplittable. Finally, optimizing the flow routing with

polynomial and capacity cost functions is shown to be hard to compute

and to approximate.

1 Introduction

In this paper, we consider problems arising from the situation in which a group
of agents sends traffic within a network. Generally, a cost function on the
amount of flow is associated either with each vertex or with each edge, and
each agent wishes to minimize its own cost, while the network administrator
wishes to minimize the total cost. We examine these models and show they
are equivalent for the types of problems we consider. We extend results for the
existence and uniqueness of Nash equilibria when agents cannot split their flow.
In this Atomic Noncooperative Network scenario, we examine the well-known
Braess’s paradox and provide examples of its existence. Finally, we examine the
problem of computing the optimal flow routing with unsplittable flow.

The game theoretical aspects of network flow routing have been of growing
interest to the computer science community ([20] , [11] , [7] , [12], [6]). This is a
part of a larger focus on noncooperative behavior in computational contexts that
has become more relevant with the growth of the Internet [17]. Other research
directions in this area include network flow control [10], multicast transmissions
[5], and peer-to-peer systems [2].

In selfish routing, several models have been proposed and results achieved.
Roughgarden thoroughly explores the “price of anarchy” in his thesis [20]. This
is the worst-case cost ratio between the Nash equilibrium and optimal routing
in a directed network with an infinite number of agents, each with a negligible
amount of flow. He also examines the problem of designing a network topol-
ogy for such agents and achieves hardness results. Mitigating this effect in an
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efficient way with taxes is explored in [3]. The existence and uniqueness of equi-
libria in networks with a finite number of users, each of whom can split their flow
among multiple paths, is examined and established under certain conditions in
[16]. Allocating capacity in a network when users behave selfishly is considered
in [13] and an efficient algorithm to achieve the optimal equilibrium.is presented.
Nisan and Ronen introduced the problem of helping agents route their traffic
efficiently when the vertex or edge transit cost is constant but known only to
the owner in [15]. An efficient centralized solution to this problem is given in [9],
and an efficient distributed algorithm for this problem in the context of BGP
routing is given in [6].

2 NetworkModel

In the literature, the network is represented either as a graph with cost functions
on the edges or as a graph with cost functions on the vertices. We choo’se to
model the network with costs on the edges, since this is more common. It will
be shown here that there exists a map M going from each graph G in the vertex-
cost model to a graph G′ in the edge-cost model, such that for every flow in G
there exists a flow in G′ with the same cost. Similarly, there exists such a map
from each graph in the edge-cost model to a graph in the vertex-cost model.

Let us consider a model in which one agent controls a certain amount of flow
in a network. The network is represented by a directed graph G = (V, E). The
agent is represented by the sequence (s, t, r), where s, t ∈ V are the source and
destination vertices, respectively, and r ∈ R is the amount of flow that agent
wishes to send. This model and the theorems about it easily generalize to the
situation in which there are multiple agents.

For the vertex-cost model, let c : V → {f : R → R} be a function from the
vertices of the graph to a function on the real numbers representing the cost
function of a vertex. Then a model instance in vertex-cost is represented by
the sequence (G, c, a). For clarity, we will denote the cost function on a vertex
v ∈ V (c(v)) as cv.

For the edge-cost model, let c : E → {f : R → R} be a function from
the edges of the graph to a function on the real numbers representing the cost
function of a vertex. A model instance in edge-cost is represented by the se-
quence (G, c, a). Again, for clarity we will refer to the cost function on an edge
e ∈ E(c(e)) as ce.

Definition 2.1 (Neighbor set). Given a graph G = (V, E), the incoming
neighbor set of a vertex v ∈ V is defined as the set Γ−(v) = {u | (u, v) ∈ E}.
Similarly, the outgoing neighbor set of v is defined as the set Γ+(v) = {u |
(v, u) ∈ E}.

Definition 2.2 (Flow). In general, a flow is a function f : E → R such that

∀e∈Ef(e) ≥ 0
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∀v∈V −{s,t}

∑

u∈Γ−(v)

f((u, v)) =
∑

u∈Γ+(v)

f((v, u))

We will further restrict the definition of a flow with the condition that it
respect the amount of flow sent by an agent:

∑

v∈Γ+(s)

f((s, v)) =
∑

v∈Γ−(t)

f((v, t)) = r

Definition 2.3 (Node cost). Given (G, c, a), an instance of the vertex-cost
model, and g, a flow in that instance. Then f : V → R, the flow through a
vertex, is known as the vertex flow and is defined as

f(v) =

{ ∑

w∈Γ−(v) g((w, v)) =
∑

w∈Γ+(v) g((v, w)) if v ∈ V − {s, t}

0 otherwise

This definition is well-defined because the first and second sums are equal in a
flow for all vertices that are not the source and destination.

Then let c(g) be the cost of the flow, defined as

c(g) =
∑

v∈V

f(v)cv(f(v))

Definition 2.4 (Edge cost). Given (G, c, a), an instance of the edge-cost
model, and f , a flow in that instance. Then c(f), the cost of the flow, is defined
as

∑

e∈E

f(e)ce(f(e))

Theorem 2.5. Given an instance I = (G, c, a) of the node-cost model, there
exists an instance I ′ = (G′, c′, a′) of the vertex-cost model for which given any
flow f in I there exists a flow f ′ in I ′ such that the costs of the two flows are
equal.

Proof. The instance I ′ is constructed as follows.
Let V ′ = {v−, v+ | v ∈ V }. Let E′ = {(u+, v−) | (u, v) ∈ E} ∪ {(v−, v+) |

v ∈ V }. Let G′ = (V ′, E′).
Let

c′((u, w)) =

{

c(v) if for some v ∈ V , u = v− ∧ w = v+

0 otherwise

Let a′ = (s+, t−, r).
Finally, let

f ′((u, v)) =







f(w, x) if u = w+ ∧ v = x−
∑

w∈Γ−(u) f(w, u) =
∑

w∈Γ+(v) f(v, w) if u = x− ∧ v = x+ for some x ∈ V
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It is easy to check that this is a flow in I’. Then

c(f) =
∑

v∈V

f(v)cv(f(v))

=
∑

v∈V

f ′((v−, v+))cv(f ′((v−, v+)))

=
∑

v∈V

f ′((v−, v+))c(v−,v+)(f
′((v−, v+)))

=
∑

e∈E

f ′(e)ce(f(e))

= c(f ′)

Theorem 2.6. Given an instance I = (G, c, a) of the edge-cost model, there
exists an instance I ′ = (G′, c′, a′) of the vertex-cost model for which given any
flow f in I there exists a flow f ′ in I ′ such that the costs of the two flows are
equal.

Proof. The instance I ′ is constructed as follows.
Let V ′ = V ∪ {e | e ∈ E}. Let E′ = {(u, e), (e, v) | e = (u, v) ∈ E}. Let

G′ = (V ′, E′).
Let

c′(v) =

{

c(e) if v = e ∈ E
0 otherwise

Let a’=(s, t, r).
Let

f ′((u, v)) =

{

f(v) if v = e for some e ∈ E
f(u) if u = e for some e ∈ E

It is easy to check that this is a flow. Then

c(f) =
∑

e∈E

f(e)ce(f(e))

=
∑

e∈E

f ′(e)ce(f
′(e))

=
∑

v∈V

f(v)cv(f(v))

= c(f ′)

3 Nash Equilibria

In selfish routing, as in other noncooperative games, finding flows for which the
system is in equilibrium is useful in understanding the system. We expect that
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the system will stay at such flows if they are ever reached, so their performance
could largely determine the system’s performance. We would generally like
to know when equilibrium flows exist, if they are unique, and how their cost
compares to the minimum flow cost. Results in these areas exist for three classes
of the edge-cost network model.

The first class is the classical model, in which there are infinitely many
agents controlling an infinitesimally small amount of flow that they can send
along only one path. This model was first studied in the 50s ([1], [21]) in the
context of traffic research. It was more recently the primary model for network
traffic studied by Roughgarden [20]. It is assumed that the cost functions on
the edges are nonnegative, continuous, and nondecreasing. In this case, it is a
result of [1], and later [4], that a Nash equilibrium flow exists, and is unique in
the sense thats its total cost is equal to the total cost of any other Nash flow.

In the second class there are finitely many agents, each of whom can split
the flow he sends to his destination along different paths. This type of game
was considered by Orda, Rom and Sihmkin in [16] in slightly more generality,
allowing the cost functions on each edge to be different for each user. With the
assumption that the edge cost functions of each user are nonnegative, continu-
ous, differentiable and convex, they sketched a proof that this game is a concave
n-person game of the type described in [18]. As a result every such game has a
Nash equilibrium.

The uniqueness results from Orda, et al., for this type of game require more
assumptions. However, uniqueness is taken in the stronger sense that every
Nash flow is equal. The situations in which a Nash flow is unique are:

• If the agents are symmetric then the NE is unique. Agents are called
symmetric if the share the same edge cost functions, have identical source-
destination pairs, and control the same amount of flow.

• If cost functions of the agents are diagonally strict convex (DSC), then the
game possesses a unique Nash equilibrium. The DSC condition is defined
in [18], and sufficient conditions for the cost functions are given by Orda
et al. that are simpler to check.

• If the cost functions of the user satisfy certain reasonable conditions and
the network consists of a set of parallel links, then the NE is unique. The
conditions are:

– Each edge function J i
l for user i on edge l is a function of the total

flow on the edge and the component of that flow contributed by user
i.

– J i
l is increasing in both arguments.

–
∂Ji

l

∂fi
l

is increasing in f i
l and fl.

In the third class there are finitely many agents, and each agent must send all
of his flow along one path from the source to the destination. Libman and Orda
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term these games Atomic Noncooperative Networks (ANN) [12]. In this game
the agent’s strategies are the paths from their sources to their destinations, a
finite set in a finite network. This restriction to a finite set of combinations
of strategies, or strategy profiles, seems to make the analysis harder, and the
results for this scenario are less broad.

Libman and Orda, in [12], prove the existence of Nash equilibrium flows
in parallel-link ANNs with some conditions on the edge cost functions. The
conditions are:

• The cost functions are the same for every edge.

• The cost functions are increasing with the flow

• The cost function for every edge l is only defined over the interval [0, Cl].
Cl is a real value that represents the capacity of the edge.

They also describe a simple algorithm to determine if the Nash flow for the
network is unique.

In 1973, Rosenthal [19] introduced a class of games termed congestion games,
for which he proved a Nash equilibrium always exists. Later it was shown [22]
that these games are isomorphic to the more well-known class of potential games.
The definition of congestion games and proof of the existence of Nash equilibria
will be given here since it is then used achieve two results about ANNs.

Definition 3.1 (Congestion games). Given a set of agents N = {1, . . . , n}
and a set of primary factors T = {1, . . . , t}. The strategy set Σi of each agent
i is a subset of the power set, Σi ⊆ 2T . Thus each strategy consists of a set
of primary factors. A cost function ck : R → R is associated with each k ∈ T ,
and takes the number of agents using k. Given a strategy profile σ, the cost
πi(σ) to each agent i is the sum of the costs of each of the factor in the strategy
for that agent. That is, let σ ∈ Σ1 × · · · × Σn be a strategy profile. Let
xk(σ) = |{σi | k ∈ σi, 1 ≤ i ≤ n}| be the number of agents using k in σ. Then

πi(σ) =
∑

k∈σi

ck(xk(σ))

Theorem 3.2 (Rosenthal). All congestion games possess at least one pure-
strategy Nash equilibrium.

Proof. Let xi
j be 1 if the ith agent plays the jth strategy Pj ∈ 2T , or zero if it

does not. A solution to the following problem must exist:


















Minimize
∑t

k=1

∑xk

y=0 ck(y)

Constrained by
∑2|T |

j=1 xi
j = 1 i = 1, . . . , n

xk −
∑n

i

∑

j|k∈Pj
xi

j = 0 k = 1, . . . , t

xi
j = 0 or 1 i = 1, . . . , n j = 1, . . . , 2|T |

Suppose a solution {xi
j , xk} to this system is not a Nash equilibrium. Then

there exists some agent a playing strategy Pj such that for some other strategy

6



Pl
∑

k∈Pl

k/∈Pj

ck(xk + 1) <
∑

k/∈Pl

k∈Pj

ck(xk)

Let {x
′i
j , x

′

k} be the variable set induced by a switching strategies from Pj

to Pl. Then

t
∑

k=1

x
′

k
∑

y=0

ck(y) =
t

∑

k=1

xk
∑

y=0

ck(y) +
∑

k∈Pl

k/∈Pj

ck(xk + 1) −
∑

k/∈Pl

k∈Pj

ck(xk)

<

t
∑

k=1

xk
∑

y=0

ck(y)

This is a contradiction. Therefore, there must exist a Nash equilibrium and
thet solution to the above program is one.

Congestion games are similar to ANNs. In fact, if all of the agents in an
ANN control the same amount of flow, a mapping exists to the set of congestion
games.

Theorem 3.3. Every ANN in which the agents have equal flow is a congestion
game.

Proof. Given an ANN instance, A = (G, c, a), in which each agent controls r
units of flow, construct a congestion game C = (N, T, Σ, c). Let the agents
in C be the agents in A, N = a. Let the edges of G be the primary factors
of C, T = E. Let the strategies of each agent be every simple path from the
source to the destination, Σi = {si − tipaths}. Let the cost function ck of C
take the values at every nonnegative integer multiple of r from 0 to n. That is,
ck(i) = ck(ir), 0 ≤ i ≤ n.

These games are equivalent. They have the same number of players. For
each player an isomorphism between the strategies in C and those in A exists,
as long as we assume that players in A will never consider paths that are not
simple, since they can only increase their cost. The payoffs that map to each
other under these isomorphisms are the same, as well, because every feasible
flow in A can only put some nonnegative integer multiple of r on any given
edge, since each agent controls r flow and can only choose one simple path for
that flow.

Corollary 3.4. Every ANN in which every agent controls the same amount of
flow has a Nash equilibrium.

Proof. This follows directly from 3.3 and 3.2.

This arguments can be extended to a special case of when the agents have
different amounts of flow.
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Lemma 3.5. Given the ANN I = (G, c, a) in which the functions in the range
of c are identical and linear, and the paths in G between every source-destination
pair of a are of the same length m. Let I ′ be the ANN identical to I except for
the agent flows, which have been scaled by some nonnegative factor ρ. That
is, ∀ir

′

i = ρri. If some flow f is a Nash equilibrium flow in I, then the flow
f ′(e) = ρf(e) is also a Nash equilibrium .

Proof. Let the identical linear cost function of each edge be ax + b. Let ri be
the flow controlled by agent i. Let f be a Nash equilibrium flow, and fi the
component of the flow contributed by agent i. Let Pi be the set of paths in G
between the source and destination of i, with p∗i the one chosen in f . Then by
definition of NE the cost to i of ci(f) must be less than that of choosing any
other path, or

∀pi∈Pi

∑

e∈p∗
i

ri(af(e) + b) ≤
∑

e∈pi

ri(af(e) + b)

Since the paths are of equal length m, this implies that

∀pi∈Pi

∑

e∈p∗
i

f(e) ≤
∑

e∈pi

f(e)

Then for the flow f ′(e) = ρf(e)

∀pi∈PI
ci(f

′) =
∑

e∈p∗
i

ρri(aρf(e) + b)

= ρri



aρ
∑

e∈p∗
i

f(e) + bm





≤ ρri

[

aρ
∑

e∈pi

f(e) + bm

]

=
∑

e∈pi

ρri(aρf(e) + b)

Therefore p∗i is the preferred path for i in f’.

Theorem 3.6. If every agent controls a rational amount of flow, the edge cost
functions are identical and linear, and all of the simple paths between a given
source-destination pair are the same length, a Nash equilibrium must exist.

Proof. Given an ANN I = (G, c, a), scale the flow controlled by every agent so
that the amounts are all integral. By Lemma 3.5, a Nash equilibrium flow found
in the game will be an NE flow in the original game.

Let ri be the amount of flow controlled by every agent i. Let xi
j be ri if the

ith agent plays the jth strategy Pj ∈ 2T , or zero if it does not. A solution to

8



the following problem must exist:



















Minimize
∑t

k=1

∑xk

y=0 ck(y)

Constrained by
∑2|T |

j=1 xi
j = ri i = 1, . . . , n

xk −
∑n

i

∑

j|k∈Pj
xi

j = 0 k = 1, . . . , t

xi
j = 0 or ri i = 1, . . . , n j = 1, . . . , 2|T |

Let M = {k | k ∈ Pl ∧ k /∈ Pj} and N = {k | k /∈ Pl ∧ k ∈ Pj}. Suppose
a solution {xi

j , xk} to this system is not a Nash equilibrium. Then there exists
some agent a playing strategy Pj such that for some other strategy Pl

∑

k∈M

ck(xk + ri) <
∑

k∈N

ck(xk) (1)

Let {x
′i
j , x

′

k} be the variable set induced by a switching strategies from Pj

to Pl. Then

t
∑

k=1

x
′

k
∑

y=0

ck(y) =

t
∑

k=1

xk
∑

y=0

ck(y) +
∑

k∈M

ri−1
∑

y=0

ck(xk + ri − y) −
∑

k∈N

r−1
∑

y=0

ck(xk − y)

=
t

∑

k=1

xk
∑

y=0

ck(y) +

ri−1
∑

y=0

[

∑

k∈M

(a(xk + ri) + b) −
∑

k∈N

(axk + b) − ay|M | + ay|N |

]

Because all paths are the same length, |M | = |N |, and (1) implies that

t
∑

k=1

x
′

k
∑

y=0

ck(y) <

t
∑

k=1

xk
∑

y=0

ck(y)

This is a contradiction. Therefore, there must exist a Nash equilibrium and
at least one is a solution to the above program.

4 Braess’s Paradox

An interesting phenomenon in the classical model of network routing is Braess’s
paradox [14], in which adding an edge to a network can actually increase the
cost of an equilibium flow. The paradox shows that improving the performance
of a given network with noncooperative agents is not just a simple matter of
adding edges. We will show that this paradox can also occur with the number
of agents is finite, and each agents must choose one path for his flow. Note that
in the classical model, an equilibrium flow must exist, and the cost of any two
equilibrium flows is the same, so the concept of this paradox is well-defined. In
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Figure 1: Instance of Braess’ paradox with infinite and finite agents

the model with finite users and unsplittable flow, however, an equilibrium may
not exist, and even if it does it may not have a unique cost.

To give an example of Braess’s paradox in the classical model, we will first
state without proof a simple characterization of a flow at equilibrium due to
Wardrop ([20]).

Theorem 4.1 (Wardrop’s Principle). A flow f feasible for instance (G,c,a)
is at Nash equilibrium if and only if for every i ∈ {1, . . . , k} and P1, P2 ∈ Pi

with fP1
> 0, cP1

(f) ≤ cP2
(f).

A graph which can suffer from Braess’s paradox is shown on the left in Figure
1. The cost functions in the total flow x are indicated next to the edges. Adding
the light edge (u, v) can increase the cost of the equilibrium flow. Let there be
one unit of flow in the graph from s to t. If (u, v) is not present, the equilibrium
and optimal flows coincide, placing 1

2 unit of flow on the path (s, u, t) and 1
2

unit on the path (s, v, t). The total cost of this flow is 3
2 . After the edge (u, v)

is added, the flow which puts two units of flow on the path (s, u, v, t) and no
flow on any other path has a cost of two on every s − t path, so by Theorem
4.1 is an equilibrium flow. The cost of this flow is 1(1) + 0 + 1(1) = 2 > 3/2, so
adding (u, v) increased the equilibrium cost.

A graph on which Braess’s paradox can occur with finite users is shown on
the right in Figure 1. The cost functions are indicated as before. Let there be
two agents in this network, each sending one unit of flow from s to t. If the
edge (u, v) is not present, then the unique equilibrium flow is again equal to the
optimal flow, and one agent puts his flow on the path (s, u, t) while the other
puts his flow on the path (s, v, t). The cost of this flow is 2[1(3−ǫ)+1(1)] = 8−2ǫ.
If the edge (u, v) is present, the unique equilibrium flow is when both agents
place their flow on the path (s, u, v, t). There are not simple conditions to verify
this is the unique equilibrium, but there are only four cases to enumerate. The
cost of this flow is 2[1(2) + 1(2)] = 8 > 8 − 2ǫ, so adding (u, v) again increased
the equilibrium cost.
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1 src/destdisjoint paths

equal flow rates

Figure 2: Routing problem and subproblems

5 Complexity of Unsplittable Flow Routing

Since ANN games are a relatively recent model in which to study network per-
formance, a natural question to ask is the complexity of finding the optimal flow
in such networks. That is, how hard it is to determine the flow that minimizes
the sum of the individual costs of each agent, in the case that each agent must
choose just one path for his flow. If the agents could freely communicate and
traded off money and network performance equally, you could even expect this
flow to be achieved through trading in a noncooperative scenario.

The complexity of this problem has a great deal to do with the type of cost
functions allowed at the edges. In the case that the cost of a link is constant, the
problem becomes no harder than the all-pairs shortest path problem. Since a
number of equilibrium results apply only to networks with convex cost functions,
and these reflect expected real-world network performance, we will consider the
complexity of certain convex cost functions. In particular, we will look at linear
cost functions, which can be no harder than polynomials of higher degree, and
capacity cost functions, of the form 1/(mu − x), which can describe the delay
of M/M/1 queues with capacity µ [20].

5.1 Complexity of Optimal Flow

Optimal unsplittable flow routing is in general an NP-hard problem. It seems
that this complexity stems from both the number of paths to consider between
every source-destination pair and the different flow amounts the every agent
may control. In light of this, we have divided the problem space as shown in
Figure 2. The universe is the set of all problems in which the edge cost functions
are all either linear, and of the form ce(x) = ax + b, or capacity functions of
the form ce(x) = 1/(µ − x). The circle labeled “disjoint paths” indicates the
set of problem instances in which all paths between a source-destination pair
are edge-disjoint. The circle labeled “1 src/dest” indicates the set of problem
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Figure 3: PARTITION graph

instances in which every agent shares the same source-destination pair. The
circle labeled “equal flow rates” indicates the set of all problem instances in
which the amount of flow controlled by every agent is the same.

We will show that the unshaded subproblems of Figure 2 are NP-hard by
reduction from PARTITION and DISJOINT CONNECTING PATHS [8]. The
PARTITION reduction will be on problems in the intersection of the “disjoint”
and “1 src-dst” problems. The DISJOINT reduction will be on problems in the
intersection of the “equal flow” and “1 src-dst” problems. Together these imply
the NP-hardness of the entire unshaded region. The complexity of the shaded
problem space is unknown.

Theorem 5.1. Let S be the set of all instances of the edge-cost model in which
one source-destination pair is shared by all agents, all the paths between that
pair are edge-disjoint, and the edge cost functions are either all linear or all
capacity functions. The problem of determining the minimum cost of a flow in
an instance of S is NP-hard.

Proof. Given an instance of PARTITION, a set of n positive integers B =
{a1, . . . an}. Let

∑n
i=1 ai = A.

Construct an instance of S with linear cost functions as follows:

• Let G = (V, E) be the graph V = {s, t, u, v}, E = {(s, u), (u, t), (s, v), (v, t)}.
Figure 3 shows this graph.

• Let the cost functions on {(u, t), (v, t)} be 0. Let the functions on {(s, u), (s, v)}
be g(x) = x.

• Let there be n agents who share the source-destination pair (s, t). Let the
amount of flow controlled by agent ni be ai.

If under a flow f , m units of flow are routed on the path (s, u, t), the cost
of f is c(f) = m2 +(A−m)2 = 2m2 − 2Am+ a2. This is minimized when
m = A/2. Therefore B has a subset of sum A/2 iff the optimal routing
has cost A2/2. This reduction can easily be done in time O(n).
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Construct an instance of S with capacity functions in a similar way, only
changing the function g(x). Let δ = min(min1≤k≤n(ak), min1≤i,j≤n(|ai − aj |)).
let the functions on {(s, u), (s, v)} be

g(x) =

{

1/(A
2 + ǫ − x), 0 < ǫ < δ if x < A

2 + ǫ
∞ otherwise

Then there is a finite cost routing iff some subset sum of B is A/2.
The value δ can be calculated in O(nlogn) time by sorting the values of B

and finding the minimum of the first value and the minimum of the successive
differences.

Theorem 5.2. Let S be the set of all instances of the edge-cost model in which
all of the agents have equal flow and the edge cost functions are either all linear
or capacity functions. The problem of determining the minimum cost of a flow
in an instance of S is NP-hard.

Proof. Given a graph G = (V, E) and a set of disjoint vertex pairs {(s1, t1), . . . (sn, tn)}
that is an instance of DISJOINT CONNECTING PATHS.

We will construct a problem instance (G’,c,a) in the vertex-cost model, since
DISJOINT is stated in terms of vertices. We then rely on Theorem 2.5 to ensure
that there is in instance in S with flows of the same cost.

Construct this vertex-cost instance with linear cost functions as follows:

• Let G′ = G.

• Let the cost function g(x) of every vertex v ∈ V be g(x) = x − 1.

• Let there be n agents with source-destination pairs {(s1, t1), . . . , (sn, tn)}.
Each agents controls one unit of flow.

The cost at every vertex is zero at x = {0, 1} and positive for x > 1. Since
each agent controls one unit of flow, there is a flow with cost zero iff there is a
set of vertex-disjoint paths between all n source-destination pairs.

Construct another instance with capacity functions in the same way, except
for every v ∈ V , let the cost function be

g(x) =

{

1
1+ǫ−x , 0 < ǫ < 1 if x < 1 + ǫ

∞ otherwise

This instance has a finite flow iff there is a set of vertex-disjoint path between
every source-destination pair.

Both constructions can be done easily in polynomial time.

Corollary 5.3. Let S be the set of all instances of the edge-cost model in which
all of the agents share the same source-destination pair, have equal flow and the
edge cost functions are either all linear or all capacity functions. The problem
of determining the minimum cost of a flow in some instance of S is NP-hard.
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Figure 4: Approximating linear routing

Proof. Make the same constructions as in 5.2. Then add a vertex s and edges
connecting that vertex to every previous source vertex, {(s, si) | 1 ≤ i ≤ n}.
Similarly, add vertex t and edges connecting to it from every previous desti-
nation, {(ti, t) | 1 ≤ i ≤ n}. Let (s, t) be the source-destination pair for each
agent. In this construction there are just as many edges leaving s and entering
t as there are agents. Also, the cost functions on the set {si, ti}i now count
in the cost since they are no longer sources or destinations. Since every agent
is identical, there is a zero (finite) flow in the instance with linear (capacity)
cost functions iff there is a set of disjoint paths connecting each si and ti. This
additional work can be done in O(n).

5.2 Complexity of Approximating Optimal Flow

Since optimal unsplittable flows are hard to compute, we would like to investi-
nage methods to efficiently compute approximations. Unfortunately, some of
the reductions given to show their hardness also show that often no constant-
factor approximation is feasible. For capacity cost functions, the results carry
over directly. Figure 5.2 shows the hardness of approximation with linear costs,
where the unshaded problem space in NP-hard and the complexity of the shaded
problem space is unknown.

Corollary 5.4. Let S be the set of all instances of the edge-cost model in which
all of the agents share the same source-destination pair, have equal flow and the
edge cost functions are either all linear or all capacity functions. The problem of
approximating the minimum cost of a flow by a constant factor ρ in an instance
of S is NP-hard.

Proof. Given an instance of DISJOINT CONNECTING PATHS, make the con-
struction of an instance I ∈ S as described in Corollary 5.3. As described in
that proof, with linear cost functions the answer to DISJOINT is YES iff the
minimum cost flow of I is zero. With capacity cost functions the answer to
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DISJOINT is YES iff the minimum cost flow of I is finite. If some algorithm
approximates the minimum cost flow by a factor ρ, with linear functions it must
return zero, and with capacity functions it must return a finite value in I, iff
the DISJOINT answer is YES.

Corollary 5.5. Let S be the set of all instances of the edge-cost model in which
one source-destination pair is shared by all agents, all the paths between that
pair are edge-disjoint, and the edge cost functions are all capacity functions.
The problem of approximating the minimum cost of a flow in an instance of S
by a constant factor ρ is NP-hard.

Proof. Given an instance of PARTITION, create the construction of an instance
I ∈ S as described in Theorem 5.1. As stated in that theorem, the PARTITION
problem’s answer is YES iff there is a finite flow in I. Therefore, an algorithm
which approximates the minimum cost flows in S by ρ must return a finite value
iff the PARTITION answer is YES.

6 Conclusions and Future Work

In general, the Atomic Noncooperative Network model performs worse and is
more complex than the classical model or the model with finite users and split-
table flow. Equilibria may not exist, and may not be unique when they do.
ANNs still suffer from Braess’s paradox. They are also very hard to optimize,
and even approximations to the optimal appear to be very difficult.

The work done so far has only begun to answer question posed by this model.
More general existence and uniqueness NE results could be obtained, as well as
examples of ANNs without equilibria. This could lead to a comparison, in the
line of inquiry of [20], between the performance of Nash and optimal flows in
ANNs.

The classical and ANN models could be viewed as a regions in a range over
the number of selfish users with unsplittable flow. It seems that as the number
of users decreases, the equilibrium performance also decreases. It would be
very interesting to investigate this relationship, as well as the same relationship
when the users can split their flow. Also, a model in which small groups of users
cooperate to improve the total group welfare could be very appropriate in some
contexts, and the performance of such a system might be explored.

The complexity results achieved for optimizing ANN flows leave some large
gaps in the problem space. Filling those gaps would help us understand the
source of complexity in this problem. Also, algorithms for the approximation of
the optimal flow, especially in the linear case, look feasible
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