
LIRA: Lightweight Incentivized Routing for
Anonymity

Rob Jansen Aaron Johnson

U.S. Naval Research Laboratory
{rob.g.jansen, aaron.m.johnson, paul.syverson}@nrl.navy.mil

Paul Syverson

Abstract—Tor, the most popular deployed distributed onion
routing network, suffers from performance and scalability prob-
lems stemming from a lack of incentives for volunteers to
contribute. Insufficient capacity limits scalability and harms the
anonymity of its users. We introduce LIRA, a lightweight scheme
that creates performance incentives for users to contribute band-
width resources to the Tor network. LIRA uses a novel crypto-
graphic lottery: winners may be guessed with tunable probability
by any user or bought in exchange for resource contributions.
The traffic of those winning the lottery is prioritized through
Tor. The uncertainty of whether a buyer or a guesser is getting
priority improves the anonymity of those purchasing winners,
while the performance incentives encourage contribution. LIRA
is more lightweight than prior reward schemes that pay for
service and provides better anonymity than schemes that simply
give priority to traffic originating from fast relays. We analyze
LIRA’s efficiency, anonymity, and incentives, present a prototype
implementation, and describe experiments that show it indeed
improves performance for those servicing the network.

I. INTRODUCTION

Onion routing [1], particularly as deployed in Tor [2], [3]
is the most widely used and extensively studied approach to
anonymous communication. By protecting who is talking to
whom and who is accessing which networks, Tor is a desirable
tool for a variety of users. Its users include, but are not
limited to: web users concerned about privacy; journalists,
intelligence agents, and law enforcement agents concerned
about hiding their operations; political activists concerned
about surveillance from their government or from political op-
ponents; and businesses concerned about industrial espionage
or competitive intelligence.

Predominantly designed to provide anonymity for its users,
Tor works by sending client traffic through multiple relays
after encrypting it once for each relay in the circuit. Each relay
decrypts and forwards traffic through the circuit as specified
by the client. This traffic encryption and decryption process
prevents a single member of the circuit from linking the user
to its intended Internet destination. As it is paramount to Tor’s
design, anonymity has been improved by other design aspects:
frequently rotating circuits and selecting the first relay from
a small set of guards helps defend against passive logging
attacks [4], [5] and further strengthens users’ privacy.
Limited Capacity and Scalability. Tor relays are run by
volunteers who altruistically contribute bandwidth and com-
putational resources to the network. As a result, Tor is usable

even by those unable or unwilling to contribute because they,
e.g., have slow connections or are behind restrictive firewalls.
Unfortunately, network capacity is limited to these altruistic
contributions and has increased sublinearly to Tor’s popularity.
In Tor’s current resource model, its popularity harms its us-
ability and performance, and may therefore have a significant
negative impact on its users’ anonymity [6], [7]. The Tor
Project [3] has enumerated many performance problems they
have recognized and are actively pursuing designs that improve
the network in this regard [8]. Recent work has focused
on reducing the existing load on the network [9], [10] and
optimizing utilization of the existing resources [11], [12], [13],
but bolstering capacity while at the same time encouraging
scalability remains a challenging open problem.

Various responses to this capacity and scalability problem
have been considered. Thus far Tor has relied on community
support to provide much-needed boosts to its capacity. For
example, Torservers.net [14] is a registered German non-profit
organization that uses donations to purchase or rent high-
bandwidth servers for the public Tor network. Similarly, the
Electronic Frontier Foundation ran a “Tor Challenge” in which
they encouraged people to set up relays and listed the names
of those who chose to be acknowledged for doing so [15].
Unfortunately, the support is limited and inadequate for Tor
to scale to millions of simultaneous users while remaining
usable. Currently Tor is initiating direct funding of relays using
government funding it receives for this purpose. As noted in
the blogpost announcement, this raises numerous questions,
such as the impact on diversity of the infrastructure [16].
Another unknown is the sustainability of any resulting capacity
increase if this direct funding ceases.

A more scalable way to increase capacity is to require all
users to contribute in a peer-to-peer fashion. However, not
only would it be difficult to force users to comply, this would
also turn away some of those most in need of its protections
due to an inability to contribute. Further, combined with a
potential lack of user interest in operating and maintaining
servers, this strategy may produce undesirable low bandwidth
or unstable relays that increase network bottlenecks and may
actually harm performance [17].

Numerous proposals to recruit new relays using incentives
have appeared in the literature. Although the incentive ap-
proach is promising, past designs have thus far been plagued

with anonymity or efficiency problems. Both the “gold star”
scheme [18] and Tortoise [9] have serious anonymity problems
that allow relays’ traffic to be identified, while PAR [19],
XPAY [20], and BRAIDS [21] do not not scale well due
to inefficient protocols. Our goal in this work is to design
and evaluate a system that combines strong anonymity with
scalable efficiency.
Lightweight Incentivized Routing for Anonymity. We
present LIRA, a unique and scalable approach to creating
incentives for users to contribute computational and bandwidth
resources to Tor. Proportionally differentiated services [22]
are the foundation for incentives: users who choose to run
relays will be able to proportionally increase their performance
relative to those not contributing. Further, relays may con-
tribute more resources to increase the amount of their traffic
that gets prioritized, leading to greater network capacity and
performance improvements for everyone. At the same time,
LIRA frustrates the adversary’s ability to utilize traffic priority
as a distinguisher of client-initiated and relay-initiated circuits.

LIRA produces incentives with a novel cryptographic lottery
design together with a new circuit scheduling algorithm that
prioritizes traffic from those winning the lottery. To play the
relay lotteries, clients send a ticket to each relay in each circuit
built in LIRA. Clients generate random number guesses to
produce tickets locally, each of which will be a winner for
a relay lottery with a tunable probability. Relays contributing
resources may collect anonymous coins proportional to their
contributions, and exchange the coins for guaranteed winners
to relay lotteries of their choosing. Relays differentiate perfor-
mance by prioritizing traffic for winning circuits.

LIRA maintains anonymity. An adversary in LIRA is un-
able to distinguish relays’ purchased winners from clients’
guessed winners, whereas an adversary in the “gold star” [18]
and Tortoise [9] incentive designs can determine that traffic
initiated from relays with absolute certainty. LIRA provides
tunable anonymity: increasing the probability that a guessed
ticket is a winner reduces the adversary’s certainty about the
traffic source.

LIRA is lightweight. Previous schemes either require that
an online trusted third party participates in routing in order
to prevent double spending, as in PAR [19] and XPAY [20],
or that the third party distributes tickets to all relays and
all clients, as in BRAIDS [21]. Neither of these approaches
scales well to millions of simultaneous users. LIRA is scalable
because purchased tickets are not managed for clients, but only
for the orders of magnitude smaller set of relays, and there is
no spending transaction when circuits are built.
Contributions. This work’s major contributions may be sum-
marized as follows:
• A unique and novel cryptographic lottery approach to

providing incentives to run Tor relays that combines
strong anonymity with scalable efficiency

• A new Tor circuit scheduler that produces performance
incentives through proportional throughput differentiation

• A detailed efficiency, anonymity, and incentive analysis
and comparison to BRAIDS [21], the state-of-the-art Tor

incentive design
• A prototype implementation and experimental validation

that LIRA provides incentives to contribute
Outline. The rest of the paper is outlined as follows. Section II
provides details about the network, our threat model, and our
objectives. LIRA’s technical design is given in Section III,
while Section IV analyzes LIRA’s efficiency, anonymity, and
incentives. Our protoype and experimental evaluation are
described in Section V, Section VI discusses related work,
and Section VII concludes.

II. PRELIMINARIES

We now discuss specific details about the deployed Tor
network that LIRA’s design considers and describe the circuit
building protocol to facilitate an understanding of how we
will propose to modify it. We also introduce a bank as an
additional service that will be utilized in LIRA’s design,
specify our adversarial threat model, and clarify the objectives
of our system. Though LIRA could be applied to various
anonymous communication systems, our exposition will focus
on the Tor [2] onion routing network.
Onion-Routing Network. The most popular instantiation of
onion routing [1], the Tor overlay network includes a directory
service that publishes information about the available relays.
Using the directory information, clients build three-hop cir-
cuits that begin with one of a small set of entry guard relays
and end with an exit relay willing to connect to the client’s
desired Internet service. A circuit is built through a telescoping
process: an encrypted tunnel is first created to an entry guard,
after which the tunnel is extended one relay at a time until the
circuit is completely established at the exit relay. During this
building process, the client negotiates an ephemeral key with
each relay in the circuit using a Diffie-Hellman key exchange
protocol. Once established, client TCP streams that conform to
the exit relay’s exit policy may be multiplexed over the circuit
for ten minutes, after which the circuit will be marked as
dirty and will not permit any new application connections. The
circuit is destroyed once existing application connections are
done using it. All data transferred over the circuit is packaged
into uniform-sized cells and encrypted using the negotiated
ephemeral keys.

A relay may be servicing several circuits at any given
time. Every circuit that results in data exchange between
any pair of relays is multiplexed over a single TCP onion-
routing connection between the pair. Cells read from this
connection are processed and placed in a scheduling queue
before being switched onto the corresponding outgoing onion-
routing connection to the next-hop relay.

Roughly 3000 geographically diverse Tor relays currently
transfer a combined total of about 1700 MiB/s from an esti-
mated 400,000 unique users per day [23]. We parameterize the
onion-routing network size for design and analysis purposes
as m onion routers and n unique users in a given time
period. We also assume the existence of a new bank service
B. The bank will assist both in establishing valid lotteries
with the relays and in assessing and rewarding contributions

Fig. 1: An overview of LIRA’s design. (a) Relays coordinate with the bank to learn which tickets will be winners for their lottery.
(b) Relays accumulate anonymous coins by contributing bandwidth to Tor, and may exchange them for guaranteed winners
to other relay lotteries. (c) Clients send either guaranteed winners or guesses through their circuits. Relays proportionally
differentiate throughput by prioritizing circuits that submitted winners to every circuit position.

(see Section III). We will assume that all entities can use
the underlying communication network to send each other
messages directly.
Adversary. We will consider the actions of both a malicious
network adversary and an honest-but-curious (i.e. passive)
bank. We use the standard network adversary for onion rout-
ing [24], which is local in that he can observe part of the
network, is active in that he can perform computations, send
messages, run onion routers, and act as a client. Although in
this paper we model the bank as a single entity, we expect
the ultimate implementation of the bank to be similar to that
of the directory service in the current public Tor network:
multiple entities run the service and form a consensus on the
authoritative documents. Therefore, we assume that the bank
faithfully executes the protocol and only makes observations
that are part of that protocol. In particular, he does not act as
an onion router or as a client, only observes messages that are
sent to him, and does not collude with the network adversary.
Objectives. Our goal is to provide incentive for anonymous-
network users to run relays while preserving the desirable
features of onion routing. Therefore, we will evaluate LIRA
in terms of its functionality, its efficiency, the anonymity it
provides, and the incentive it offers to run a relay.

We require that our system provide the functionality pro-
vided by onion routing. In particular, it should provide bidirec-
tional, stream-oriented, low-latency communication between
pairs of users. In addition, the responder of a stream should
only need to run a standard transport protocol so users can
communicate with destinations that aren’t aware of or designed
for anonymous communication protocols.

We also require that the efficiency of our system is com-
parable to onion routing. The success of Tor over alternative
anonymous-communication protocols can be attributed in large
part to its relatively low computational and communication
costs. In particular, our protocol should have costs for each
user that are proportional to amount of his anonymized traffic
and for relays as a group that are proportional to the total
amount of anonymized traffic. Moreover, we want the resource
requirements at the bank to be achievable under current Tor

network conditions and to scale well with a growing network.
Our evaluation will consider relationship anonymity [24]

in our system, that is, the extent to which users can be
linked to their communication partners. We will measure this
using the probability that an adversary assigns to a user
communicating with his actual destinations. We will also
evaluate the incentives provided by LIRA. As it is designed
to improve throughput and latency for users running relays,
we will measure this performance difference while also con-
sidering the extent to which a user can cheat and obtain these
improvements without contributing.

III. DESIGN

To achieve the objectives stated in Section II, LIRA em-
ployes a cryptographic lottery and a relay circuit scheduler that
prioritizes traffic for users who submit winning lottery tickets.
A high level overview of LIRA’s design and the interactions
between these mechanisms is given in Figure 1. Through coor-
dination with the bank, the relays receive information allowing
them to recognize winning tickets to their own lottery (see Fig-
ure 1a). Over time, relays accumulate anonymous electronic
coins from the bank by providing service to the network. These
coins may be exchanged for guaranteed winning ticket values
for a variety of relay lotteries (see Figure 1b). Clients without
coins guess ticket values to produce them locally: their guesses
will be winners with tunable probability. Tickets are passed
to the relays through circuit control messages, and relays
cannot distinguish a guessed winner from a guaranteed winner.
Relays in every circuit position verify tickets and prioritize
circuits of submitted winners by proportionally increasing their
throughput (see Figure 1c). We now describe LIRA’s design
in further detail.

A. Setup

The bank will use RSA blind signatures [25], which allow
it to sign a message without being able to link the signature
with an earlier signing request. Let M be the RSA modulus
of the bank, e be the public encryption exponent, and d be
the corresponding private decryption exponent. Each relay r

will need a public random value xr ∈ Z∗M associated with it.
These values can be generated by the bank and distributed by
the directory service. For each relay r, the bank computes its
signature xdr and sends it to r. Finally, the system will use a
full-domain hash function H : {0, 1}∗ → {0, 1}λ/2, where λ
denotes the security parameter for the system. We can use a
cryptographic hash function such as SHA-1 for H .

B. Coin Distribution

LIRA rewards relays proportional to the amount of band-
width they contribute. Since relays can not be trusted to
self-report their bandwidth contributions, we determine each
relay’s contribution with a secure bandwidth measurement
scheme such as EigenSpeed [26]. Using EigenSpeed, relays
opportunistically measure and evaluate each other’s contribu-
tions to form an accurate consenus of relay bandwidth that
has been shown to be resistant to attacks by malicious groups
of colluding nodes [17], [26]. The measurement process runs
continuously while a consensus is formed periodically.1

The bank stores and tracks each relay’s bandwidth contri-
bution over time, keeping an account balance of contributed
bytes and updating it with each new bandwidth contribution
consensus. A relay may collect ` digital coins from the bank
for every α bytes it has contributed, where ` is the circuit
length (` = 3 in Tor). A coin is constructed using a blind
signature [25] to prevent the bank from later linking the coin
to a given relay (the final signature is unknown to the bank).

Relays use their coins to purchase guaranteed winners from
the bank (see Section III-C). The bank prevents double spend-
ing of these by keeping a database of previously spent coins
that it checks (and possibly updates) when it receives coins
in a purchase request. The size of the database is bounded by
a coin expiration period η. A blind signature simplifies the
construction of the coin over some electronic cash schemes
since we do not require double spending detection by a third
party after a coin has been successfully spent.

Advantages of using coins in the manner outlined above in-
clude flexibility and transferability. Coins are flexible because
relays may accumulate them during periods when they are not
actively using Tor as a client, and they are valid as long as the
bank exists and the coin has not expired. The expiration period
η is set so that the bank can store and access a list of spent,
unexpired coins and may be adjusted as the Tor network scales.
Section IV shows that currently in Tor 127.5 coins would be
generated per second. If each coin is a 1024-bit signature, we
can set η = 28 days, resulting in list of at most 4.60 GiB and
fitting into a single machine’s memory.

A coin is inherently transferable because it is not tied to a
specific relay, allowing the possibility of a secondary economy
to form around the purchase and sale of coins. In such an
economy, it would also be possible for clients who do not run
relays to obtain coins, improving anonymity by increasing the
uncertainty of the sources of winning tickets.

1Tor currently computes the directory consensus every hour, which could
be amended to include the bandwidth contribution information.

We configure the ratio of the number of contributed bytes
α to the number of prioritized bytes β received in return to
α = (` + 1) · β. By requiring a contribution ` + 1 times that
of prioritized consumption, we account for transferring data
through each of the ` relays in the circuit, and also ensure that
new relays that join Tor will only increase its overall capacity.

C. Purchasing Guaranteed Winners

Relays will prioritize traffic on circuits for which winning
lottery tickets are supplied. Winners will be determined using
a relay-specific permutation that we define below (Eq. 2). Let
the size of the permutation’s input space be 2λ, and let gr :
[2λ] → [2λ] be the permutation of relay r. A value x is a
winner for r if, for y0||y1 = gr(x), y0 ⊕ y1 < p2λ/2, where
p ∈ [0, 1] is a system parameter. Thus a client that guesses
an input x randomly will obtain a winner with probability p.
To guarantee priority, a client can also use coins earned by
providing service to the network to purchase winners.

Setting p presents a tradeoff between anonymity and incen-
tives. Guessing a winner is less likely for smaller values of p.
In this case, prioritized circuits are more likely to be paid for
and thus probably originate at a client also running a relay.
For larger values of p, it is more likely that a circuit will be
prioritized by chance, and there will be less reason to run a
relay and earn priority. (We discuss this tradeoff in more detail
in Section IV.) We adopt a setting of p = n−1/(2`). For the
current Tor network, we estimate n to be 10000, and thus we
would set p = 10−2/3 ≈ 0.22.

The construction of the permutations gr is designed to
provide properties similar to those of a pseudorandom permu-
tation (PRP), although they are technically somewhat different.
In particular, the permutations will appear sufficiently random
to clients that they cannot produce winners with probability
significantly greater than p. Moreover, they are efficiently
invertible so that the bank can sell winners by choosing
y = y0||y1 such that y0 ⊕ y1 < p2λ/2 and providing the
corresponding input g−1r (y). The construction also allows the
purchase of winners for r to be made while hiding the identity
of r and the winning number from the bank.

If we didn’t want to hide this information from the bank, we
could easily implement the rest of this functionality by using a
PRP such as AES. The bank could share different private keys
with each of the relays, and the user would simply purchase a
winner by presenting a coin and specifying a relay. We wish
to keep the bank as oblivious as possible, and thus we use a
more involved construction for the lottery permutations.

The essential ingredient of the construction is for the bank
to use blind signatures to obliviously provide a relay-specific
input to a certain pseudorandom function (PRF) (Eq. 1). We
then use a two-round version of the Luby-Rackoff construc-
tion [27] to convert the PRF into a permutation that is largely
unpredictable to the relay.

1) Private Evaluation of Pseudorandom Functions: The
PRF we use is adapted from one suggested by De Cristofaro et

1. c obtains blinded signature bxdr
either from B or as protocol input.

2. c sends bH(x)xdr to B.
3. B sends H(H(x)xdr) to c.
4. c outputs H(xH(H(x)xdr).

Fig. 2: PRF Protocol: c obtains fr(x) from B

al. [28] that can be computed obliviously.2 Our construction
doesn’t provide full obliviousness with respect to the bank,
but it will provide privacy assuming that the bank does not
collude with a relay. The PRF used by relay r is

fr(x) = H(x(H(H(x)xdr))), (1)

where, as described above, xr ∈ Z∗M is publicly known.
The PRF Protocol for client c to obtain fr(x) from the bank

B is given in Figure 2. We leave the option to obtain a blind
signature in Step 1 as an input to the protocol to enable a
batch-mode execution that will be used in the final purchase
protocol. The client will be unable to guess outputs that he
doesn’t query with better than random chance because the
relay signature xdr never appears in a message from the server
that hasn’t been blinded or hashed. Moreover, the protocol
protects the privacy of the client’s inputs (doing so is what
prevents us from using a simpler PRF, such as H(xdrx)). In
particular, the first unblinded input the bank sees has a factor
H(x) and thus appears random given that the bank doesn’t
know x. Including a factor of x before applying H in the last
step prevents the bank itself from learning the final output.

2) Private Permutation Evaluation: Now we consider how
to turn this into a permutation. Given f : {0, 1}k → {0, 1}k,
the Feistel permutation Df : {0, 1}2k → {0, 1}2k on x =
x1||x0, x1, x0 ∈ {0, 1}k, is defined as

Df (x1||x0) = (x0||x1 ⊕ f(x0)).

This is invertible because x0 is contained in the first k bits,
and x1 can be calculated as f(x0)⊕ (x1 ⊕ f(x0)). Luby and
Rackoff showed that applying the Feistel permutation four
times with four pseudorandom functions yields a pseudoran-
dom permutation. We use this idea, but, in our setting, we
will disallow winners at a relay that result in PRF inputs that
have been used before. Thus, we can use the Luby-Rackoff
construction with the single pseudorandom function fr. In
addition, we do not need the permutation output to appear
random, but rather the XOR of the output halves. Thus, we
are able to reduce the number of Feistel permutations to two.
We therefore obtain a permutation for relay r of

gr(x) = Dfr (Dfr (x)) . (2)

The permutation in Equation 2 is used by the relay to
determine if a given ticket is a winner. To purchase a winner,

2The PRF they suggest is H′(H(x)d). To compute it, the client computes
H(x), obtains an RSA blind signature on it from the bank, and applies H′

to the result.

1. c randomly chooses a and sends aexr to B.
2. B randomly chooses b and sends baxdr to c.
3. c uses the PRF Protocol with input bxdr

to obtain fr(y1) and sets y2 = fr(y1)⊕ y0.
4. c uses the PRF Protocol with input bxdr

to obtain fr(y2) and sets y3 = fr(y2)⊕ y1.
5. c outputs y3||y2.

Fig. 3: Permutation Protocol: c obtains g−1r (y) from B

1. c pays B a digital coin.
2. c randomly chooses y0, y1 such that

y0 ⊕ y1 < p2λ/2.
3. c uses the Permutation Protocol to

obtain g−1r (y0||y1).

Fig. 4: Winner Purchase Protocol: c purchases a winner for r
from B

a client will actually choose a winning permutation output
and apply the inverse permutation to obtain the ticket number.
Let such an output be y = y1||y0, y0, y1 ∈ {0, 1}λ/2. The
Permutation Protocol for a client c to obtain g−1r (y) from the
bank B is given in Figure 3. Observe that this protocol gives
the client quite a bit more information about the function g−1

than a simple oracle query would. In fact, it reveals enough
information for the client to determine values of g which
he has not obtained via the protocol. However, this is only
possible for a negligible quantity of inputs and we will show
that relays can limit him to obtaining guaranteed priority only
as many times as he has paid for winners (see Section IV).

3) Protocol to Purchase Winners: The Winner Purchase
Protocol run by client c to purchase a winner for relay r
from the bank B is given in Figure 4. We emphasize that the
bank will only participate in step 3 of the Winner Purchase
Protocol if c presents a valid coin. This protocol is run entirely
over an anonymous onion-routing connection made by c to B.
To prevent the bank from learning when encrypted circuits
were made, clients should buy enough winners at a time
to construct γ prioritized circuits, should maintain a reserve
of enough winners to construct γ/2 prioritized circuits, and
after depleting their reserve below this amount should wait a
minimum time selected uniformly at random from [0, ω] before
purchasing more winners.

We set γ to balance privacy with respect to the bank with
the flexibility of the recommended buying strategy. Increasing
γ increases the amount of time between batches of purchases
observed by the bank and thus the number of other users’
prioritized circuits that hide the buyer’s circuits. On the other
hand, decreasing γ decreases the number of coins a relay
should have stockpiled before purchasing winners. We will ask
a relay to run for at least 3 hours before purchasing winners.
For a relay providing the current median bandwidth in Tor of
100 KiB/s [23] and with Tor’s path length of ` = 3, after 3
hours the relay obtains about 79 coins. Each prioritized circuit

1. c runs onion-routing circuit-creation protocol.
2. For each relay r in the circuit, c sends a TICKET

cell with either a purchased winner wr
or random guess xr ∈ [1, 2λ].

3. For every β bytes that pass over the circuit,
c repeats Step 2 with new winners or guesses.

Fig. 5: Circuit Setup Protocol for client c

costs ` coins, and so we set γ = 26.
We set ω to maximize the number of prioritized connections

that could have triggered a purchase without emptying the
reserve of winners. Thus we set ω to the point at which
a client’s reserve of γ/2 winners would become empty had
he been making only prioritized connections. For clients that
make new circuits at rate r this happens at ω = γ/(2r). In
Tor, r ≈ 1, and so we have ω = 13 minutes.

D. Circuit Setup

LIRA slightly modifies the onion-routing circuit-creation
protocol (cf. Section II) to accommodate prioritization. Clients
use a new TICKET cell type to send a lottery number to each
relay on a circuit and attempt to obtain priority. A TICKET cell
has the structure [TICKET, number], where the number field
contains a value in [0, 2λ). This cell is sent to a relay from the
client over the circuit and is thus onion-encrypted. In addition,
relays on a circuit signal prioritization status to one another.
These messages are sent directly over an encrypted pairwise
connection (e.g. over the persistent TLS connections that Tor
maintains between pairs of relays) with an identifier indicating
to which circuit they pertain.

The Circuit Setup Protocol at the client is described in
Figure 5. It simply adds periodic lottery-ticket messages to the
standard circuit-creation protocol in onion routing. Note that
the ticket messages are sent onion-encrypted over the circuit
and thus can only be read by the recipient.

Relays determine priority for their circuits using the Circuit
Priority Protocol described in Figure 6. For each position in
a circuit, a relay maintains priority values for itself, for the
preceding segment of the circuit, for the succeeding segment of
the circuit, and for the entire circuit. The relay also maintains
a counter for the number of priority bytes that are left under
the current prioritization. Observe that the protocol involves
explicit signaling along the circuit to synchronize the priority
status of the relays. Thus, for the circuit depicted at the bottom
of Figure 1c, even though the middle relay has received a
winner, it will mark the circuit as DEAD after it receives a
DEAD relay priority from either the guard or exit relay.

Also observe that, during the validation of a ticket number,
the PRF inputs used during the two applications of the Feistel
permutation (Eq. 2) are stored. If a PRF input used during
ticket validation has been seen before, then that ticket is
considered a loser. This prevents a client from reusing old
winners and from using PRF outputs obtained from the bank
to construct multiple winners. Finally, note that once a losing

Upon receiving data cell
If priority bytes counter is greater than zero

Reduce priority bytes counter by cell size
If priority bytes counter is zero

and self priority status is not DEAD
Set self priority status to EXPIRED
Set circuit priority status to EXPIRED.

Upon receiving priority status from adjacent relay
Store status and send to other adjacent relay
If all stored relay priorities are TRUE

Set circuit priority TRUE
If any stored relay priority is DEAD

Set circuit priority DEAD
Upon receiving TICKET cell with value x

Compute y0||y1 = gr(x), storing intermediate
PRF inputs

If y0 ⊕ y1 < p2λ/2

and intermediate PRF inputs previously unseen
and no stored priority status is DEAD
Set self priority status to TRUE
Increment priority bytes counter by β
Set circuit priority TRUE

Else set self and circuit priority statuses to DEAD
Send self priority status to adjacent relays

Fig. 6: Circuit Priority Protocol for relay r

ticket has been observed, the priority status is DEAD and no
further priority is possible on the circuit.

The value of β, the number of bytes for which a winner
provides priority, provides a tradeoff between user anonymity
and the incentive to run a relay. A small β makes it unlikely
that a guesser, that is, a user who does not buy winners, will
maintain priority over the life of a typical circuit. This reduces
the anonymity of a buyer, who we wish to allow to obtain
priority for an entire connection. Setting a large β, assuming
the price of a winning ticket increases proportionally, causes
buyers to either use a circuit for a long time, reducing their
anonymity by increasing the linkability of their connections,
or to lose many of the bytes for which priority has been
purchased, decreasing the incentive to earn it. In addition,
a large β increases the granularity of buying winners, and
so more e-cash must be earned before it can be used, again
decreasing the incentive to earn e-cash.

Given these considerations, we use a value of β that is
greater than the length of a typical connection. As discovered
by McCoy et al. [29], over 90% of connections over Tor
are HTTP connections. Ramachandran[30] shows data from
billions of web pages showing that the mean size, including
all embedded content, is 320KB. Cheng et al. [31] show
that the mean YouTube file size is 8.4MB. To enable most
web connections as well as such popular activities as viewing
videos, we use β = 10MiB.

E. Circuit Scheduling

To improve the quality of service of qualifying traffic—cells
on circuits for which valid winners have been provided—we
incorporate ideas from the differentiated services architecture
(DiffServ) [32]. More specifically, we ensure a relative quality
ordering between qualifying and non-qualifying traffic using
a priority scheduling mechanism based on the proportional
differentiation model [22]. The model aims to provide pre-
dictable and controllable performance: quality metrics should
be consistently proportional between classes and the propor-
tions should be adjustable.

In the proportional differentiation model, traffic is separated
into N classes labeled c1, . . . , cN . The model states that the
desired quality measurement qi for each class ci should be
proportional to the other classes, where the proportions are
configured with a differentation parameter pi for each class.
The classes should be scheduled such that the relative quality
of each class follow the configured differentation parameters:

∀i ∈ [N],∀j ∈ [N] :
qi(t, t+ σ)

qj(t, t+ σ)
=
pi
pj

where p1 < p2 < . . . < pN , and σ is the measurement
timescale. Dovrolis et al. explore Proportional Delay Differ-
entiation and a priority scheduler that differentiates classes
using queueing delay (packet waiting time) as the desired
quality metric [33]. The scheduler utilizes two statistics to
determine which class ci to schedule at time t: the queueing
delay Di(t) of the longest waiting packet in ci, and the long-
term average delay δi(t) of all previously scheduled packets
(i.e., the average queueing delay of packets at the moment they
are scheduled). The quality metric under Proportional Delay
Differentiation becomes:

qi(t) = Di(t) · f + δi(t) · (1− f)

where f is an adjustable fraction (0.875 is suggested in [33]).
A priority is computed for each ci as Pi(t) = qi(t)/pi(t), and
the longest waiting packet from the class with the maximum
computed priority is scheduled next.

Once a class is selected, the above approach is essentially
first-come, first-served scheduling since each packet’s delay
timer starts when the packet enters the queue. However, it
has been shown that an alternative approach is better suited
to scheduling in the Tor network. In particular, prioritizing
circuits with a low exponentially-weighted moving average
(EWMA) circuit throughput may improve performance of
bursty traffic while minimally harming bulk traffic with higher
desired long-term throughput [11]. Therefore, LIRA schedules
using Proportional Throughput Differentiation, where we ad-
just the quality metric at time t using the EWMA throughput of
the lowest throughput circuit Ti(t) and the long-term average
throughput τi(t) of previously scheduled circuits:

qi(t) = Ti(t) · f + τi(t) · (1− f)

where f remains adjustable. The priority is now computed
for each ci as Pi(t) = qi(t) · pi(t), and the circuit with the
lowest EWMA throughput from the class with the minimum

TABLE I: Bank Costs

Service Operations Messages
Coin generation ρ signatures ρ coin-size sent

ρ coin-size received
Selling winners ρf verifications ρf coin-size sent

2ρf hashes 2ρf coin-size received
ρf signatures 2ρf winner-size sent

2ρf winner-size received

computed priority is scheduled next. Scheduling in this model
allows us to configure the performance payoff associated with
running a relay, or correctly guessing a winning ticket.

IV. ANALYSIS

A. Efficiency

LIRA preserves all the communication functionality of
onion routing while providing both anonymity and efficiency.
This section will consider how LIRA affects the overall
computational and communication costs of the network.
Overhead. Clients may purchase a winner from the bank for
each relay in a circuit to receive β = 10 MiB of prioritized
traffic. Purchasing these winners involves ` RSA encryptions
for the client portions of blind signatures and 4` hashes. This
cost is on the order of the cost for building a circuit, which is
continuously incurred throughout a Tor client session. Clients
that do not purchase winners incur no extra computational cost
by using LIRA.

Our goal is to keep relay CPU costs low because, according
to the Tor developers, the high-bandwidth Tor relays are
CPU-bound. LIRA introduces some overhead for relays with
ticket verification, i.e., checking whether or not tickets are
winners. This process involves evaluating the permutation
in Equation 2 for every β bytes of transferred data. Each
evaluation involves 6 hash computations, as well as a smaller
number of multiplications and XORs. The DiffServ scheduler
has been shown to be efficient [33] since each scheduling
decision must only compute one priority for each class.

The bank is involved in distributing e-cash to relays and
selling winning tickets. To generate e-cash, the bank creates
a coin for every α/` = 10(` + 1)/` MiB sent by a given
relay. Creating a coin involves a single blind signature, and
these coins are given to the relays using a simple two-message
protocol. To sell a winner, the bank must verify a coin by
verifying a signature, provide a blind signature, and then
participate in the batch PRF Protocol two times, each of which
involves one hash.

We now consider the bank costs if the entire network is
transferring b MiB/s and the fraction of coins that end up being
used by the relays that earn them is f . Let ρ = `b/(10(` +
1)) be the rate at which coins are generated in this network.
The rate of costly cryptographic operations and communicated
messages for each bank service are outlined in Table I. It
shows that the rate of the cryptographic operations is just a
fraction of the total rate of traffic on the network. Table I also
shows that the communication costs at the bank, in terms of
the number of messages, the size of a digital coin, and the
size of a ticket number, are similarly small.

Current Costs in Tor. To get a more concrete idea of what
the costs at the bank might be in practice, we estimate what
it would cost for a bank to serve the current Tor network.
In Tor, b = 1700 and ` = 3. The most costly operation by
one to two orders of magnitude is signature generation. In the
above setting, the rate of signature generation is 127.5+127.5f
per second, where again f ∈ [0, 1]. OpenSSL benchmarks in
Linux on an Intel Core2 Duo 2.67 GHz machine show that it is
capable of creating 1705 1024-bit RSA signatures per second,
and thus a modest machine is easily capable of generating the
required signatures.

We also estimate the communication costs at the bank in
this setting by using a signature size of 1024 bits and a ticket-
number size of λ = 320 bits. Then the bank sends at a total
rate of 15.94 + 25.90f KiB/s and receives at a total rate
of 15.94 + 41.84f KiB/s, easily manageable with a single
consumer-grade network connection.

Comparison to BRAIDS. To further understand LIRA’s
efficiency, we compare it to the efficiency of BRAIDS [21], the
state-of-the-art Tor relay incentive design. The cost for each
client in LIRA and BRAIDS are similar, however, only the
clients that are purchasing guaranteed winners must pay this
cost in LIRA as opposed to all clients that receive free tickets
in BRAIDS. Further, a relay verifying winners in LIRA is at
least an order of magnitude more efficient than a relay veri-
fying tickets in BRAIDS: our OpenSSL benchmarks indicate
LIRA’s winner verification (6 SHA-1 hashes) takes roughly
18 microseconds, whereas a BRAIDS ticket verification takes
roughly 1500 microseconds [21] on the same hardware.

The most important cryptographic cost is at the bank.
LIRA’s bank only needs to cryptographically pay the relays
for some fraction of the total traffic due to its lottery design.
On the other hand, the bank in BRAIDS pays for all traffic
by distributing tickets to all clients. In addition, the number
of ticket purchases is proportional to the amount of e-cash
actually used by the relays to obtain prioritized service. If, as
we expect, many relays altruistically provide more service than
needed to support their own use, the system gains significant
efficiency over distributing tickets to clients.

If we change the parameters of the BRAIDS scheme to more
conservatively compare LIRA3, we observe that BRAIDS re-
quires at least 637.5 signatures per second. Even if f = 1 and
relays spend all their credit, LIRA is more efficient. Moreover,
BRAIDS requires a less computationally efficient partially-
blind signature scheme. The signature-generation protocol
in BRAIDS also has higher communication costs in both
directions than RSA blind signatures, and thus is easily greater
than LIRA’s costs in both directions.

3We suppose that BRAIDS creates tickets for only half of the network
traffic, as it is designed to cover Web traffic (58% of Tor traffic [29]).
Also, we allow each ticket to buy 10MiB of priority, as in LIRA, and we
give relays a bytes sent/earned ratio of 1/4, also as in LIRA. We then have
(1700*3)/(2*4*10)=63.75 tickets created per second, which yields 63.75*20/2
= 637.5 total signatures per second when ticket exchanges are included.

B. Anonymity

We are interested in the extent to which the use of LIRA
affects the anonymity of onion routing. Onion routing security
is well-explored in the literature [24], [34], [35], [36], [37],
and its vulnerabilities generally exist after adding our incentive
system. Therefore, our goal is to prevent whatever anonymity
is provided by onion routing from being significantly de-
graded. In this section we denote by negl(λ) a function that
is negligible in λ 4.
Single Connection. Consider first a network adversary ob-
serving a single connection below the priority cutoff length
of β. If the adversary is observing at a guard node, the user
may be identified as running a relay if he is connecting to the
guard from it. However, the multiple connections case shows
that this would be quickly learned by the guard anyway. Thus
it is a good idea for the user to use his own relays as guards.

Assuming the adversary is not observing at a guard node,
from the adversary’s perspective, LIRA simply adds TICKET
cells and status signaling messages between pairs of relays.
Users only directly affect the TICKET cells. Guessers and
buyers generate these cells according to different distributions,
potentially leading to some deanonymization. The difference
lies in the probability that the TICKET cells contain a winner
or not. Therefore, we need only consider an adversary’s
observations about whether or not the user inserts winning
tickets into each of the relays on a circuit.

Suppose that a user does provide winners for an entire
circuit. This happens with probability 1 for buyers and p` for
guessers. The adversary can easily learn that submitted tickets
were winners if he controls one of the circuit’s relays. He may
also learn this by observing the speed of traffic to and from
a destination under his observation. Over time, the adversary
can learn the distribution of traffic speeds for prioritized and
unprioritized traffic and use the separation between these (as
demonstrated in Section V) to infer the priority status of a
given observed connection. Assume that buyers consist of
the m relays and guessers consist of the other users of the
network at a given time, and that each user is a priori equally-
likely to create a circuit. Then the probability that the source
of a connection is a given relay, based only on its circuit
prioritization status, is 1/(m+(n−m)p`), and the probability
that it is a given non-relay is p`/(m+ (n−m)p`).

Now suppose that a user’s tickets are not winners for the
entire circuit. This happens with probability 0 for buyers and
1 − p` for guessers. As before, the adversary can determine
this in several ways. Buyers never fail to provide a winner,
and so the adversary can infer that the source is a guesser.
Given n − m guessers, the probability that the source is a
given one is 1/(n−m). (Of course buyers could intentionally
fail to submit winning tickets at some relays periodically to
complicate this analysis. We do not evaluate such possibility
in this paper.)

We are most interested in the case that there are relatively

4A function f that is negligible in λ decreases faster with λ than any
inverse polynomial. That is, f(λ) = o(1/λk) for any k.

few buyers, as that would be true currently if LIRA were
deployed in Tor, and we would expect it to remain so as long
as the cost of running a relay is high relative to the benefit
of anonymity for most users. In this case, the probability
that a given buyer is the source of a single short prioritized
connection, based only on its circuit prioritization status, is
roughly 1/(m + np`). With p = n−1/(2`), this becomes
1/(m+

√
n). Thus, we can see that uncertainy over the source

increases with the total number of users n, a desirable property
of onion routing that we want to preserve. With few buyers,
the probability that a given guesser is the source of a single
short unprioritized connection, based only on the circuit’s
prioritization status, is roughly 1/n, which is the best possible.

Of course, an adversary need not only take into account the
prioritization status of a relay for purposes of deanonymiza-
tion. Indeed, as discussed, all attacks on onion routing it-
self maybe be used in addition to the information provided
by LIRA. However, the action of the incentive system is
independent of the underlying onion routing protocol, and
therefore the effect on deanonymization is simply to weight the
distribution an adversary would otherwise infer. For example,
suppose that, excluding the observations from the incentive
system, the adversary can infer that the source is a given user
with probability p1. If that user has probability p2 of achieving
the priority observed, then, including those observations, the
probability of the user becomes (proportional to) p1p2. One
consequence of this as that LIRA increases the posterior
probability of a buyer by at most 1/p`.
Multiple Connections. Circuits on which more than β bytes
are sent include multiple TICKET cells from users. The above
analysis applies to any one priority status, but taken together
they degrade the anonymity of the user to the point that they
are essentially identified as either a buyer or a guesser. Suppose
a user’s circuit transfers more than (k − 1)β bytes. This will
happen when a single connection exceeds that amount. It can
also happen if the total volume of multiple connections sent
over the same circuit exceed that amount.5 In this situation the
user updates his priority status k times. The probability that
a guesser maintains priority through all the updates is pk`.
Therefore, such a circuit created by a buyer quickly identifies
him as a buyer, and the probability that it is a given buyer
conditional only on the priorities observed is 1/(m + (n −
m)pk`). Guessers are always identified as guessers when the
tickets they submit fail to be winners, and this happens with
an increasing likelihood of 1− pk`.

Users making many circuits over time face the possibility of
a similar decrease in anonymity. If an adversary can observe
the priority status of k of a user’s connection and link them
together as belonging to the same (unknown) user, the resulting
anonymity is just as if the user updated the priority status of
a given circuit k times. Some ways the adversary may be
able to link connections include controlling a destination at

5The amount of traffic sent over a circuit depends on the relative rates at
which circuits and connection are created and destroyed. Tor only puts new
connections on circuits that have been used for less than ten minutes, with a
preference among used circuits for the youngest.

which users are active over long-lived sessions, controlling
some exit nodes and linking together connection by related
activities, and controlling some middle nodes and observing
connections coming from the same guard nodes. The adversary
is also be able to link connections at a guard node because
they come from the source directly. A user running a relay
may hope to hide that fact from a given guard by connecting
to the anonymity network from a different location and buying
tokens from a guard anonymously through a different guard.
However, if he consistently buys priority, his guards will
quickly determine that.

We note that hiding over the long term the fact that better
service is being purchased seems to be a fundamental issue that
any scheme will suffer from to some degree. In BRAIDS [21],
for example, normal users receive fewer coins than relays, and
so they can only be confused with relays if they save up many
coins before buying, and thus few of them can buy at any one
time. On the other hand, allowing users to purchase service
without running a relay, which we ignored in our analysis due
to uncertainty, has the potential to attract many more users than
those that run relays. The Torservers.net project [14] already
demonstrates that many prefer donating money to running
relays. (Note that this also presents a mechanism whereby
purchasing priority can indirectly add commensurate capacity
to the network if all proceeds of such sales are directed into
the purchase of more capacity, such as Torservers.net does.) In
addition, the widespread use of VPNs for Internet security and
blocking resistance indicate a willingness to pay for privacy.
Bank Privacy. We assume that the bank is semi-honest and
only observes messages sent to it. The bank only observes the
amount of e-cash earned by relays, when cash is transferred
among users, and the purchase of winners. Clearly, then,
the bank doesn’t learn anything about the destinations of
connection through the anonymity network, and therefore
users have relationship anonymity with respect to the bank.
However, LIRA protects user privacy even further.

First, all bank purchases are made using anonymous connec-
tions and anonymous coins. Therefore the bank doesn’t learn
who is spending e-cash and buying service in the network.

Second, clients batch and randomly time their purchase
of ticket winners to hide when prioritized circuits are made
from the bank. Clients should purchase γ` winning tickets
at a time. If a relay prioritizes all his circuits and makes
them at Tor’s rate r ≈ 1 per minute, he purchases winners
every γ = 26 minutes. Moreover, the time of the purchase
triggered by a prioritization that reduces a client’s reserve
of winners below the γ/2 threshold is hidden from a bank
within a period of ω = 13 minutes. To get an idea of how
many other prioritizations occur during these time periods,
consider n = 10000 users making circuits at rate r, each
gaining priority with probability p` = 1/

√
n. Then during

a 26 minute period between purchases there are an expected
γnp`r = 2600 prioritized circuits from other users and during
a 13 minute period there are an expected 1300 such circuits.

Third, the Winner Purchase Protocol hides from the bank the
relay identity and the ticket number of a purchased winner. The

1. B sends challenge relays r0 6= r1 to C.
2. C chooses a random bit z ∈ {0, 1}.
3. C obtains a coin from B.
4. C executes the Winner Purchase

Protocol with B for relay rz .
5. B outputs a guess z′ for the value of z.
6. The experiment value is 1 if z′ = z, 0 if not.

Fig. 7: WPP-REL-IND experiment between B and C

indistinguishability experiment WPP-REL-IND between the
bank B and a challenger C shown in Figure 7 tests how well
the bank can determine the relay of a purchase. Theorem 1
shows that the observations a bank makes during a purchase
for given relay are indistinguishable from the observations
made during a purchase for a different relay.

Theorem 1: In the Random Oracle Model,
Pr[WPP-REL-IND = 1] ≤ 1/2 + negl(λ).

Proof: Model H as a Random Oracle. Let Z represent
the random bit chosen in Step 2 of the WPP-REL-IND
experiment. We compare this experiment when Z = 0 and
Z = 1 and show that, except with negligible probability, a
given view of the adversary is equally likely in both cases.
Let B make queries Q1, Q2, . . . , Qt to H in that order during
the experiment.
C begins the experiments for both Z = 0 and Z = 1 by

paying B a coin. Coin generation and payment is independent
of relay selection, and thus the observations B makes as part
of those processes does not affect the probability of later
observations and can be ignored.

Next, C chooses O ≤ Y0, Y1 < 2λ/2 such that Y0 ⊕ Y1 <
p2λ/2. We can view C as choosing Y1 independently and
uniformly at random such that O ≤ Y1 < 2λ/2. This implies
that C chooses Y0 in Step 2 independently and uniformly at
random from the p2λ/2 values that satisfy 0 ≤ Y0 ⊕ Y1 ≤
p2λ/2. We let

Y2 = frZ (Y1)

= Y0 ⊕H(Y1H(H(Y1)x
d
rZ

denote the value to be computes in Step 3 of the Permutation
Protocol. Then we can define Collision to be the event that
Qi = Y1 or Qi = Y2 for any 1 ≤ i ≤ t.
C next sends aexrZ to B to obtain the blinded signature

bxdrZ , where a is chosen independently and uniformly at
random. As in the preceding, this observation can thus be
ignored.

Next, C sends X1 = bH(Y1)x
d
rZ to B. Consider the

queries Q1, . . . , Qt1 that occur before C queries H(Y1). Y1
is independent of all observations of B at this point, and
therefore the probability that Qi = Y1 for some 1 ≤ i ≤ t1 is
2−λ/2 ∈ negl(λ). Similarly, Y0 is independent of all of B’s
observations, and thus the probability that Qi = Y2 for some
1 ≤ i ≤ t1 is p2−λ/2 ∈ negl(λ). Assume from this point on
that this doesn’t happen.

The result of the query Y1 to H is thus independently and
uniformly random. Thus the probability of X1 is the same
whether Z = 0 or Z = 1. The former case, of course,
implies that H(Y1) = X1/(bx

d
r0), while the latter implies that

H(Y1) = X1/(bx
d
r1).

The next message from C to B is X2 = bH(Y2)x
d
rZ .

Let Q1, . . . , Qt2 be the queries that B makes to H up to
the point that C queries Y2. We have already assumed that
Qi /∈ {Y1, Y2} for 1 ≤ i ≤ t1.

We can define an experiment similar to WPP-REL-IND
to test how well the bank can guess the ticket number of
a purchase. It can be shown that the bank succeeds in that
experiment with at most a negligible amount over a random
guess as well.

C. Incentives

LIRA is designed to create an incentive for users to run
relays or otherwise contribute to the system. We explore in
Section V the extent to which it successfully provides better
service to users that receive priority. Here we consider if users
must, as we intend, earn e-cash in order to increase the amount
of priority they can obtain. Again we denote by negl(λ) a
function that is negligible in λ.

We first note that the possibility of cheating the system
is an important consideration but one less important than
performance and preserving anonymity. Regardless of whether
or not a user can deviate from the protocol to obtain more
priority, the anonymity and performance properties of the
system still hold. Thus system operators could experiment
with the use of LIRA without compromising the properties the
network already provides. Furthermore, the amount of cheating
that will occur in practice in a network protocol is unclear.
BitTorrent, for example, is susceptible to cheating [38], [39],
but it tends to perform well in practice. Somewhat low barriers
to cheating may well be sufficient to induce most participants
to comply.

LIRA is designed to force users to pay in order to obtain
a winner with probability greater than p. It achieves this by
using an e-cash scheme and a novel cryptographic lottery.

In the e-cash scheme, users must present valid digital coins
to participate in the Winner Purchase Protocol (Fig. 4). The
e-cash scheme prevents coin forgery or double spending.

The winners themselves are obtained by participating in the
Permutation Protocol (Fig. 3). This protocol allows users to
observe much more about gr than just the output. However,
the intermediate PRF outputs that the users observe are only
allowed by a relay to appear in one winner. If another ticket
is submitted with a previously seen PRF value, the relay will
treat it as a loser. Thus these intermediate values are of no use
in producing more winners than were paid for, and on inputs
with unseen intermediate PRF values, the XOR of the halves
of the lottery permutation does indeed appear random.

We formalize this property in the security experiment PP
between an adversary A and a challenger C shown in Figure 8.
We will show that A succeeds in this experiment with at most a

1. A outputs relays r = {r1, . . . , rk}
and a challenge relay rc /∈ r.

2. C outputs random values {xr1 , . . . , xrk , xrc}
in Z∗M and signatures {xdr1 , . . . , x

d
rk
}.

3. C executes the Permutation Protocol with A
as many times t as requested.

4. A outputs x = {x1, . . . , xt+1}.
5. If ∀iyi0 ⊕ yi1 < p2λ/2, where yi0||yi1 = grc(xi)

and no intermediate PRF input would be reused
during protocol evaluations of the grc(xi),
the experiment value is 1; else it is 0.

Fig. 8: PP experiment between A and C

1. C generates RSA parameters (M, e, d)
and outputs (M, e).

2. A outputs relays r = {r1, . . . , rk}
and a challenge relay rc /∈ r.

4. C outputs random values {xr1 , . . . , xrk , xrc}
in Z∗M and signatures {xdr1 , . . . , x

d
rk
}.

5. C executes the PRF Protocol with A some t
number of times.

6. A outputs x = {x1, . . . , xt}, {y1, . . . , yt}, xc /∈ x.
7. C randomly chooses z ∈ {0, 1}.
8. C outputs frc(xc) if z = 0 and else a random y.
9. A outputs a guess z′. The experiment value is 1

if z′ = z and ∀iyi = frc(xi). Otherwise it is 0.

Fig. 9: PRF experiment between A and C

negligible probability greater than p. But first, we show that the
PRF Protocol actually provides the PRF properties. The PRF
experiment shown in Figure 9 tests whether, after executing the
PRF Protocol some arbitrary number of times t, an adversary
A can distinguish frc(x) from a random value for more than
t inputs x, where rc is some challenge relay. Lemma 1 shows
that the adversary succeeds in this experiment with probability
at most a negligible amount over random chance.

Lemma 1: In the Random Oracle Model and under the RSA
assumption, Pr[PRF = 1] ≤ 1/2 + negl(λ).

Proof: We can reduce winning this game to solving the
RSA problem. We construct a simulator S for the PRF chal-
lenger C and random oracle H . S implements H internally. S
implements parameter selection by relaying RSA parameters
from the RSA challenger to PRF adversary A. S randomly
selects the relay signatures xdri , computes the relay values
xri from them, and randomly selects xrc . S executes the
challenger side of the PRF Protocol by storing the response
values wi = H(xi) output by A and using random values vi
for each H(H(xi)x

d
rc).

Step 1 of the PRF Protocol is random, and so the distribution
of these values given A’s view is accurately produced by S.
The value for H(H(xi)x

d
rc) is indeed random in A’s view

unless the response from A in Step 2 of the PRF Protocol
is such that xdrcwi is equal to some value queried of H by

A. S can check for this possibility by dividing all queries
for H by each new wi received from A, raising it to the
power e, and comparing to xrc . If any verification succeeds,
S submits that value to the RSA challenger. Under the RSA
assumption, the probability that this happens is negligible.
Assuming this doesn’t happen, C randomly chooses a bit z and
outputs a random y. If the outputs xi and yi of A are such that
H(xi) = wi and yi = H(vixi), then S has not “programmed”
H with a value for H(xc)x

d
rc (i.e. choosing a value without

knowing the input). S again checks if H(xc)x
d
rc has been

queried by dividing all queries by H(xc) and raising to the e,
sending to the RSA challenger if so. Thus this happens with
negligible probability. Assuming it hasn’t, frc(xc) is random
from A’s perspective, and the random y from C has the correct
distribution. z is random and independent of y, and thus z′ = z
with probability 1/2.

Therefore, overall C presents the correct view to A except
with negligible probability, and thus we have Pr[PRF = 1] ≤
1/2 + negl(λ).

Using Lemma 1, we can now show that the adversary does
not have an advantage in finding more than t winners under
the permutation gr.

Theorem 2: In the Random Oracle Model, Pr[PP = 1] ≤
p+ negl(λ).

Proof: After executing the Permutation Protocol t times,
A only obtains the value of frc on 2t inputs. Therefore, among
the 2(t + 1) values to which frc is applied according to
Equation 2, there must be at least one repeated value or one
on which A has not evaluated frc . If there is a repeated value,
then the experiment value is 0. Otherwise, there is an unknown
evaluation of frc that appears random to A by Lemma 1. If this
input to frc appears as half of one of the xi, the probability
that its value under frc results in a known input to frc in the
next Feistel permutation is thus negligible, and so one half
of grc(xi) appears random to A. If the unknown frc input
appears after the first Feistel permutation of some xi, one half
of grc(xi) again appears random to A. In either case, the XOR
of the halves of some grc(xi) appears random to A. Thus that
xi is a winner with probability negligibly close to p.

While this theorem shows that users can only themselves
produce unused winners with probability p, a user may try to
game the network by creating circuits and determining their
priority. If he attempts to do so without colluding with any
relays, he must determine the priority of the circuit from its
performance alone. Suppose that doing so requires that he
send or receive at least c cells on a circuit. Then, to obtain
a circuit with priority, the user must transfer an expected c/p
total cells. If the cost of tranferring these cells is comparable to
the amount of traffic a relay needs to transfer in order to earn
enough coins to build a circuit, a rational user might choose
to take that more-reliable option.

A user might also run or collude with a relay in order to
obtain priority without paying. A relay on a circuit is able
to determine from the messages between adjacent relays on
a circuit its priority status. Therefore, a user could collude
with a guard node to create and destroy circuits until one with

priority is obtained. Similarly, the user could collude with a
middle or exit node, although given that the user in this case
is presumably known to the colluding relay, it would seem
only to improve performance without decreasing anonymity
to directly connect to that relay. A simple remedy for this
attack that renders it equivalent to testing and creating circuits
is to defer the activation of priority on a circuit until some
number c of cells have passed in either direction. The initial
traffic on a circuit is fast even without priority due to EWMA
scheduling, and so the performance impact should be minimal,
although we have not implemented it in our experiments. An
additional possible attack is for a colluding relay in the middle
of the circuit to lie about the priority status of either side in
order to get partial priority of a circuit. However, we again
observe that it would seem to make little sense for a user to
use a colluding relay as a middle node rather than connect
directly. Also, for all attacks that involve a relay, the costs
associated with running a relay are already being paid, and
it would have to be the case that the cost of simply adding
capacity is more than the cost of running a cheating scheme.

Finally, we observe that similar opportunities for cheating
exist in other recent incentivization schemes for anonymous
communication. The Tortoise scheme of Moore et al. [9]
allows users to create many circuits to avoid throttling, similar
to the multiple-circuits attacks in LIRA. Also, the BRAIDS
design of Jansen et al. [21] is susceptible to malicious guards
as well, in that guards can easily steal the winning tickets
intended for their users. Thus while LIRA does not eliminate
cheating, it does offer a substantially new balance among
competing priorities.

V. EXPERIMENTS

We simulate LIRA in an effort to understand the perfor-
mance benefits possible when running our incentive scheme.
Our experiments are done using Shadow [40], a scalable,
high-fidelity network simulator that is capable of running real
Tor binaries as plug-ins (using the available Shadow plug-in
called Scallion [41]). Shadow allows us to create a private
Tor network on a single machine and avoid privacy risks
associated with live network experiments. Shadow experiments
are completely controllable and repeatable, and are faithful to
Tor’s protocols since Shadow runs the real Tor software. In
this section, we describe our configured experimental network
environment, quantify its consistency with public Tor network
performance, and explore how LIRA affects performance and
improves incentives for a variety of users. Note that all of the
experiments described in this section are repeated ten times to
diminish random experimental variances, and each uses Tor
software version 0.2.3.13-alpha.

A. Network Model

Shadow requires a complete-graph network topology that
includes properties such as upstream and downstream band-
widths, latency, jitter, and packet loss. As network modeling
is itself a challenging research problem, we rely on previous
Tor network modeling contributions by Jansen et al. [42].

Their work considers every element of the Internet and the
Tor network itself that must be modeled to run accurate Tor
experiments in Shadow. Their model is built using real Internet
measurements from GeoIP [43], iPlane [44], [45], and Net
Index [46], and is validated with multiple experimentation
platforms and data from the live Tor network itself [23].

We now give an overview of the Tor network model used
in our experiments and discuss how it was modified from the
original, the full details of which are presented in [42]. Our
private Tor network consists of 50 generic HTTP servers, 50
Tor relays, 500 Tor clients. Of the 50 Tor relays, there is 1
directory authority, 20 exit relays, and 29 non-exit relays.

Although the original model configured 475 web and 25
bulk clients, a wider range of client applications would provide
a more realistic traffic distribution. Therefore, we slightly
modify the clients to better approximate Tor’s protocol distri-
bution as described in [29] and [47]. We configure 10 instant
messaging clients (im), 465 web HTTP clients (web), 20 bulk
HTTP clients (bulk), and 5 peer-to-peer clients (p2p). The
im clients download 1 KiB files, pausing for one to five
seconds after finishing one download and before starting the
next. The web clients download 320 KiB files and pause for
1 to 20 seconds. The bulk clients continuously download 5
MiB files without pausing. All of the im, web, and bulk
clients choose a random HTTP server for each download. The
p2p clients form a “swarm” around a single 700 MiB file
that is managed by a p2p authority. Each pair of p2p nodes
connect and continuously exchange 16 KiB blocks of the file
without pausing. Payload download times are measured as an
indication of network performance.
Model and Simulation Accuracy. As we modified the model
as originally described and validated in [42], we re-evaluate
the consistency of Shadow’s results with live network data.
To determine how well our modeled network approximates
client performance in the public Tor network, we compare
download times in a vanilla Tor experiment with measurements
of Tor collected by the TorPerf measurement system [48].
TorPerf downloads 50 KiB, 1 MiB, and 5 MiB files through
the Tor network to monitor performance, and records various
download times. Because our clients download differently
sized files than TorPerf, we compare the time to receive the
last byte of each of our experimental downloads with the
time to receive the closest byte that is reported by TorPerf.
As shown in Figure 10, Shadow does a reasonable job of
characterizing the expected performance of the public Tor
network. Performance for im and p2p clients are consistent
with TorPerf measurements (Figure 10a), as are web and
bulk downloads below approximately the fiftieth percentile
(Figure 10b).

The difference in performance in the upper half of the
distributions is possibly due to Tor’s scheduling policy [11],
in which circuit priority decreases as its throughput increases.
TorPerf will have higher expected priority than clients in our
experiments since TorPerf downloads once per circuit whereas
our clients download multiple times per circuit. Note that we
were unable to confirm this suspicion beyond reasonable doubt

0 1 2 3 4 5
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

tor-512B
shadow-512B
tor-16KiB
shadow-16KiB

(a) im and p2p clients

0 20 40 60 80 100 120 140
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

tor-300KiB
shadow-320KiB
tor-5MiB
shadow-5MiB

(b) web and bulk clients

Fig. 10: Shadow and public Tor performance are reasonably consistent for various transfer sizes.

due to a lack of experimental single file circuit downloads.

B. LIRA Prototype

We implement a research prototype of LIRA as described
in Section III by directly modifying the Tor source code.
To understand how to attribute changes in performance, we
run separate experiments using the default EWMA circuit
scheduling algorithm (vanilla Tor), our new Proportional
Throughput Differentiation scheduler (diffserv) based on work
by Dovrolis et al. [33] (see Section III-E), and various LIRA
configurations (lira).
Class Differentation. We configure our new prototype sched-
uler with “paid” and “unpaid” classes c1 and c2, and dif-
ferentiation parameters p1 = 1.0 and p2 = 10.0. Priorities
are weighted by taking fraction f = 0.875 of the head-of-
queue circuit EWMA, and 0.125 of the long-term class average
EWMA. The EWMA throughput algorithms in both classes
are configured with a 30 second half-life, which is also the
default in our vanilla experiment and in public Tor. In our
diffserv experiment, we isolate the new scheduler from the
LIRA prototype: all clients are categorized in the unpaid class
and there is no ticket guessing or buying. For each relay in
our lira experiments, there is a corresponding client who uses
that relay’s winners to receive priority for all of its downloads.
Of these 50 “paid” clients, we configure 1 im client, 47 web
clients, 1 bulk client, and 1 p2p client. The remaining clients
are “unpaid” and will only receive a prioritized circuit by
correctly guessing with probability p = 0.01. Each prioritized
circuit may be used for β = 10 MiB of data transfer, after
which new guesses are submitted.

As shown by the cumulative distributions of download
times in Figure 11, the new scheduler appears to give slightly
preferential service to low throughput im clients and slightly
worse to high throughput p2p clients. The scheduler tends to
perform slightly worse than Tor’s default scheduler, possibly
because our prototype implementation has not been optimized.
Our diffserv experiment provides a base upon which LIRA

may be compared. The fundamental mechanism provided by
the scheduler that is used to create performance incentives is
tunable class differentiation. Figure 11 shows the scheduler’s
ability in this regard, as paid downloads are clearly differenti-
ated from unpaid downloads. Note that the loss in performance
for paid im downloads in Figure 11a is an artifact of the small
sample (a single im client) and high latency due to unfavorable
placement in the topology.
New Relay Capacity. Figure 11 shows performance in a
network where only the existing Tor relays receive priority.
We now explore a situation where several existing clients
begin routing traffic for Tor. We consider networks where 5%
and 15% of the existing client base6 begin running a relay,
adding a total of 25 and 75 relays and newly-paid clients to
the existing sets of 50. Rationally, each new relay severely
rate-limits its contribution so as to earn only enough winning
tickets to support the expected throughput requirements of its
client as computed from our vanilla experiment. This is a
conservative estimate. Each client contributes four times its
expected client throughput since LIRA will prioritize 1/4 of
a relay’s contributed bytes when ` = 3. Therefore, rate-limits
are set to 20 KiB/s for those running im clients, 80 KiB/s for
those running web clients, 340 KiB/s for those running bulk
clients, and 128 KiB/s for those running p2p clients. Note
that 1/3 of the added relays are exit relays, roughly the same
proportion as in the current Tor network.

The rate-limiting outlined above results in 6.5% and 17.1%
total additional network capacity, and represents a slightly
pessimistic approximation of expected client contributions. To
understand both extremes of the range of possible user behav-
iors, we configure other networks where the same 15% of new
relays chosen above do not rate-limit their contributions. In the
non-rate-limited networks, new relay bandwidth is sampled
from the Net Index distribution [46] and results in a 95.7%
and 383.5% increase in network capacity. Figure 12 shows

6Of the 5% of clients that begin running relays, we select 1 im, 23 web, 1
bulk, and 1 p2p. Of the 15%, we select 2 im, 69 web, 2 bulk, and 2 p2p.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla
diffserv
lira-paid
lira-unpaid

(a) 1 KiB im clients

0 5 10 15 20
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla
diffserv
lira-paid
lira-unpaid

(b) 320 KiB web clients

0 50 100 150 200
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla
diffserv
lira-paid
lira-unpaid

(c) 5 MiB bulk clients

0 2 4 6 8 10
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla
diffserv
lira-paid
lira-unpaid

(d) 16 KiB p2p clients

Fig. 11: Client download time distribution in vanilla Tor, when using our proposed scheduler, and after adding LIRA’s design
modifications. LIRA adequately differentiates performance for paying clients without additional capacity.

the result of additional capacity on client performance. As
expected and not surprisingly, the added capacity results in a
net increase in overall performance over LIRA without new
relays, even under our rate-limiting scenarios. The net benefit
to the network increases for all clients types, and more dra-
matically as more capacity is added. Our results confirm that
LIRA (using the proportional throughput scheduler) enables
performance incentives for contributors.

VI. RELATED WORK

Several incentive schemes have been proposed for mix-
nets [49], [50], [51] but do not directly apply to low-latency
anonymous communication networks or Tor. Incentive designs
for Tor include PAR [19], a scheme where relays accept real
monetary payments from clients in return for routing service.
PAR separates payments into anonymous coins paid by clients
to guard relays, and more efficient identity-bound coins paid to
the remaining relays. PAR and a similar micropayment scheme
called XPAY [20] require an online bank to participate in the
routing protocol to verify that the coins have not been double-

spent. LIRA, however, is much more scalable as it does not
require the bank to be involved in any routing transactions.
LIRA also does not suffer from the fundamental trade-off
between double-spending detection and accountability that
plagues PAR and XPAY, wherein anonymity inherently de-
creases as the ability to detect cheaters improves.

Ngan et al. propose a lighter-weight scheme in which
the fastest 7/8 relays are marked with a “gold star” in the
public Tor directory based on measurements by the directory
servers [18]. These relays are given priority as they build
circuits through other gold-star relays, and enjoy improved
performance because only fast relays receive gold stars. Un-
fortunately, relay anonymity is reduced because the set of
potential initiators of a prioritized circuit (the gold-star relays)
is much smaller than that of an unprioritized circuit (any active
client). LIRA manages the small anonymity set problem by
allowing every user to receive priority by correctly guessing
a winning ticket.

Jansen et al. propose BRAIDS [21], an incentive scheme
that, similarly to LIRA, eliminates the double-spending prob-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

lira
+6.5%
+17.1%
+95.7%
+383.5%

(a) 1 KiB im clients

0 5 10 15 20
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

lira
+6.5%
+17.1%
+95.7%
+383.5%

(b) 320 KiB web clients

0 50 100 150 200
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

lira
+6.5%
+17.1%
+95.7%
+383.5%

(c) 5 MiB bulk clients

0 2 4 6 8 10
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

lira
+6.5%
+17.1%
+95.7%
+383.5%

(d) 16 KiB p2p clients

Fig. 12: Client download time distribution as clients begin to run relays. Adding additional capacity as shown results in a net
increase in performance considering both paid and unpaid clients.

lem by using relay-specific “tickets”. Each relay may directly
prevent the double spending of its tickets without needing
to contact the centralized bank. BRAIDS aims to improve
anonymity for relays by distributing tickets to all clients,
using existing guard nodes as proxies for distribution. This
strategy limits the total number of tickets that may exist
in the system due to bank resource constraints and reduces
payment flexibility. LIRA is more efficient in this regard since
it must only manage ticket transactions for relays providing
service—a much smaller set than that of all clients. BRAIDS
also differentiates service [33] by asking clients to specify
and pay for the desired class (“high throughput” or “low
latency”), which may partition clients and negatively affect
their anonymity. Conversely, clients do not choose their desired
class in LIRA.

As an alternative to using e-cash or other payment-based
cryptographic mechanisms to provide incentives, Moore et al.
suggest in Tortoise [9] a universal rate limit of Tor clients
and an exemption from such throttling for relays marked
as stable and fast in the consensus. Unfortunately, this

approach suffers from anonymity problems similar to the gold-
star approach described above: the anonymity set of a given
circuit is limited to a subset of relays, and the timing of
relays’ priority status appearing in the consensus leaks infor-
mation that enables an intersection attack over time. LIRA,
however, provides strong anonymity for well-defined spending
levels. As in LIRA, Tortoise clients may multiplex traffic over
multiple guards to evade throttling, thereby weakening the
incentives provided by the system.

There has also been some work considering the behavior of
participants in an anonymous-communication network from
an economic perspective. Acquisti et al. [52] describe the
costs and benefits of anonymity-network users, identify the
challenges in designing systems that cope with selfishness,
and present some possibilities for solving those challenges.
Humbert et al. [53] provide an analysis of using a scrip system
to incentivize selfish agents in a cooperative privacy-enhancing
system such as an anonymity network. They establish the
existence of a Nash equilibrium, examine its social welfare,
and show how to manage the supply of scrip. Future study of

sociological behaviors in LIRA would be interesting should
the system be deployed.

VII. CONCLUSION

The Tor network suffers from performance problems par-
tially caused by a lack of relays willing to altruistically
volunteer bandwidth. This paper presented LIRA, a novel
incentive scheme that increases performance for those who
contribute to the network by running a relay. We have shown
that clients who choose to run relays enjoy faster downloads
than those who don’t, due to a novel ticket lottery design and
a scheduler that differentiates service for winning tickets.

LIRA provides a higher degree of anonymity than previous
proposals while eliminating the need for clients to contact the
bank since, with tunable probability, clients can randomly self-
produce winning tickets.

There are numerous directions for future work. Among
them is developing a better understanding of the economics
of anonymous incentives and how rational users might be
expected to behave in LIRA or a similar design. Also useful
would be a modified incentive structure that provides non-
linear payoff for contributed capacity and higher payoff for
more desirable relays such as bridges, exits, and those in
more diverse geographic locations. A distributed bank that
functions securely within Tor’s trust model would improve
scalability. Finally, better defenses against strategies for at-
tempting to cheat the system and improved protection against
long-term anonymity problems associated with linking paid
high-throughput users would not only benefit LIRA, but any
system attempting to provide anonymity-protected incentives.

VIII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their feedback
and suggestions for improving this work. This research was
supported by the ONR and DARPA.

REFERENCES

[1] D. M. Goldschlag, M. G. Reed, and P. F. Syverson, “Hiding routing
information,” in Information Hiding: First International Workshop,
R. Anderson, Ed. Springer-Verlag, LNCS 1174, 1996, pp. 137–150.

[2] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th USENIX Security
Symposium. USENIX Association, August 2004, pp. 303–319.

[3] “The Tor Project,” https://www.torproject.org/.
[4] L. Overlier and P. Syverson, “Locating hidden servers,” in Security and

Privacy, 2006 IEEE Symposium on. IEEE, 2006, pp. 15–pp.
[5] M. Wright, M. Adler, B. N. Levine, and C. Shields, “Defending anony-

mous communication against passive logging attacks,” in Proceedings
of the 2003 IEEE Symposium on Security and Privacy, May 2003, pp.
28–43.

[6] R. Dingledine and N. Mathewson, “Anonymity loves company: Usability
and the network effect,” in Fifth Workshop on the Economics of
Information Security (WEIS 2006), R. Anderson, Ed., June 2006.

[7] P. Syverson, “Why I’m not an entropist,” in Seventeenth International
Workshop on Security Protocols. Springer-Verlag, LNCS, 2009, forth-
coming.

[8] R. Dingledine and S. Murdoch, “Performance improvements on tor or,
why tor is slow and what were going to do about it,” Online: http://www.
torproject. org/press/presskit/2009-03-11-performance. pdf, 2009.

[9] W. B. Moore, C. Wacek, and M. Sherr, “Exploring the potential benefits
of expanded rate limiting in tor: Slow and steady wins the race with
tortoise,” in Proceedings of 2011 Annual Computer Security Applications
Conference (ACSAC’11), Orlando, FL, USA, December 2011.

[10] R. Jansen, P. Syverson, and N. Hopper, “Throttling tor bandwidth
parasites,” in Proceedings of the 21st USENIX Security Symposium.
Internet Society, August 2012.

[11] C. Tang and I. Goldberg, “An improved algorithm for Tor circuit
scheduling,” in CCS’10: Proceedings of the 13th ACM Conference on
Computer and Communications Security. ACM, 2010, pp. 329–339.

[12] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy, S. Savage,
and G. Voelker, “Defenestrator: Throwing out windows in tor,” in
Privacy Enhancing Technologies. Springer, 2011, pp. 134–154.

[13] T. Wang, K. Bauer, C. Forero, and I. Goldberg, “Congestion-aware
Path Selection for Tor,” in 16th International Conference on Financial
Cryptography and Data Security (FC), 2012.

[14] “Torservers.net,” https://www.torservers.net/.
[15] “The EFF Tor Challenge,” https://www.eff.org/torchallenge/.
[16] “Turning funding into more exit relays,” https://blog.torproject.org/blog/

turning-funding-more-exit-relays, July 2012.
[17] R. Snader and N. Borisov, “A tune-up for Tor: Improving security and

performance in the Tor network,” in Proceedings of the Network and
Distributed Security Symposium - NDSS ’08. Internet Society, February
2008.

[18] T.-W. J. Ngan, R. Dingledine, and D. S. Wallach, “Building incentives
into Tor,” in Proceedings of Financial Cryptography (FC ’10), R. Sion,
Ed., January 2010.

[19] E. Androulaki, M. Raykova, S. Srivatsan, A. Stavrou, and S. M.
Bellovin, “PAR: Payment for anonymous routing,” in Privacy Enhancing
Technologies: 8th International Symposium, PETS 2008, N. Borisov and
I. Goldberg, Eds. Leuven, Belgium: Springer-Verlag, LNCS 5134, July
2008, pp. 219–236.

[20] Y. Chen, R. Sion, and B. Carbunar, “XPay: Practical anonymous
payments for Tor routing and other networked services,” in Proceedings
of the Workshop on Privacy in the Electronic Society (WPES 2009).
ACM, November 2009.

[21] R. Jansen, N. Hopper, and Y. Kim, “Recruiting new Tor relays with
BRAIDS,” in Proceedings of the 2010 ACM Conference on Computer
and Communications Security, CCS 2010, Chicago, Illinois, USA, Oc-
tober 4-8, 2010, A. D. Keromytis and V. Shmatikov, Eds. ACM, 2010.

[22] C. Dovrolis and P. Ramanathan, “A case for relative differentiated
services and the proportional differentiation model,” Network, IEEE,
vol. 13, no. 5, pp. 26–34, 1999.

[23] “Tor Metrics Portal,” http://metrics.torproject.org/.
[24] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr, “Towards an

analysis of onion routing security,” in Designing Privacy Enhancing
Technologies: International Workshop on Design Issues in Anonymity
and Unobservability, H. Federrath, Ed. Springer-Verlag, LNCS 2009,
July 2000, pp. 96–114.

[25] D. Chaum, “Security without identification: transaction systems to make
big brother obsolete,” Commun. ACM, vol. 28, no. 10, pp. 1030–1044,
Oct. 1985. [Online]. Available: http://doi.acm.org/10.1145/4372.4373

[26] R. Snader and N. Borisov, “Eigenspeed: secure peer-to-peer bandwidth
evaluation,” in Proceedings of the 8th international conference
on Peer-to-peer systems, ser. IPTPS’09. Berkeley, CA, USA:
USENIX Association, 2009, pp. 9–9. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1855663.1855672

[27] M. Luby and C. Rackoff, “How to construct pseudorandom
permutations from pseudorandom functions,” SIAM J. Comput.,
vol. 17, no. 2, pp. 373–386, Apr. 1988. [Online]. Available:
http://dx.doi.org/10.1137/0217022

[28] E. De Cristofaro, C. Soriente, G. Tsudik, and A. Williams, “Humming-
bird: privacy at the time of twitter,” in 33rd IEEE Symposium on Security
and Privacy. IEEE, 2012.

[29] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker, “Shining
light in dark places: Understanding the Tor network,” in Privacy Enhanc-
ing Technologies: 8th International Symposium, PETS 2008, N. Borisov
and I. Goldberg, Eds. Leuven, Belgium: Springer-Verlag, LNCS 5134,
July 2008, pp. 63–76.

[30] S. Ramachandran, “Web metrics: Size and number of resources,” http:
//code.google.com/speed/articles/web-metrics.html, 2010.

[31] X. Cheng, C. Dale, and J. Liu, “Statistics and social network of youtube
videos,” in In the Proceeding of the 16th IEEE International Workshop
on Quality of Service (IWQoS), 2008, pp. 229–238.

[32] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated service,” United States, 1998.

https://www.torproject.org/
https://www.torservers.net/
https://www.eff.org/torchallenge/
https://blog.torproject.org/blog/turning-funding-more-exit-relays
https://blog.torproject.org/blog/turning-funding-more-exit-relays
http://metrics.torproject.org/
http://doi.acm.org/10.1145/4372.4373
http://dl.acm.org/citation.cfm?id=1855663.1855672
http://dl.acm.org/citation.cfm?id=1855663.1855672
http://dx.doi.org/10.1137/0217022
http://code.google.com/speed/articles/web-metrics.html
http://code.google.com/speed/articles/web-metrics.html

[33] C. Dovrolis, D. Stiliadis, and P. Ramanathan, “Proportional differenti-
ated services: Delay differentiation and packet scheduling,” IEEE/ACM
Transactions on Networking (TON), vol. 10, no. 1, pp. 12–26, 2002.

[34] J. Feigenbaum, A. Johnson, and P. Syverson, “Probabilistic analysis of
onion routing in a black-box model,” in Proceedings of the 2007 ACM
Workshop on Privacy in Electronic Society (WPES 2007), 2007, pp.
1–10.

[35] N. Evans, R. Dingledine, and C. Grothoff, “A practical congestion attack
on tor using long paths,” in Proceedings of the 18th USENIX Security
Symposium, August 2009.

[36] N. Hopper, E. Y. Vasserman, and E. Chan-Tin, “How much anonymity
does network latency leak?” ACM Transactions on Information and
System Security, vol. 13, no. 2, February 2010.

[37] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz, “Denial of service
or denial of security? How attacks on reliability can compromise
anonymity,” in Proceedings of CCS 2007, October 2007.

[38] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani, “Do incentives build robustness in BitTorrent?” in
Proceedings of the 4th USENIX Symposium on Networked Systems
Design & Implementation (NSDI 2007). USENIX, Apr. 2007. [Online].
Available: http://www.usenix.org/events/nsdi07/tech/piatek/piatek.pdf

[39] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, “Free Riding in
BitTorrent is Cheap,” in 5th Workshop on Hot Topics in Networks
(HotNets), Irvine, California, USA, November 2006.

[40] R. Jansen and N. Hopper, “Shadow: Running Tor in a box for accurate
and efficient experimentation,” in Proceedings of the Network and
Distributed System Security Symposium - NDSS’12. Internet Society,
February 2012.

[41] “Shadow Code,” http://github.com/shadow/.
[42] R. Jansen, K. Bauer, N. Hopper, and R. Dingledine, “Methodically

Modeling the Tor Network,” in Proceedings of the 5th Workshop on
Cyber Security Experimentation and Test, August 2012.

[43] “MaxMind GeoIP,” http://www.maxmind.com/.
[44] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-

ishnamurthy, and A. Venkataramani, “iPlane: An Information Plane for
Distributed Services,” in Proc. of USENIX OSDI, 2006, pp. 367–380.

[45] “iPlane: Datasets,” http://iplane.cs.washington.edu/data/data.html.
[46] “Net Index Dataset,” http://www.netindex.com/source-data/.
[47] A. Chaabane, P. Manils, and M. Kaafar, “Digging into anonymous traffic:

A deep analysis of the tor anonymizing network,” in Network and System
Security (NSS), 2010 4th International Conference on. IEEE, 2010, pp.
167–174.

[48] “TorPerf measurement tools,” https://gitweb.torproject.org/torperf.git/.
[49] E. Franz, A. Jerichow, and G. Wicke, “A payment scheme for mixes

providing anonymity,” Trends in Distributed Systems for Electronic
Commerce, pp. 94–108, 1998.

[50] D. R. Figueiredo, J. K. Shapiro, and D. Towsley, “Using payments to
promote cooperation in anonymity protocols,” 2003.

[51] M. Reiter, X. Wang, and M. Wright, “Building reliable mix networks
with fair exchange,” in Applied Cryptography and Network Security.
Springer, 2005, pp. 159–173.

[52] A. Acquisti, R. Dingledine, and P. Syverson, “On the economics of
anonymity,” in Financial Cryptography. Springer-Verlag, LNCS 2742,
2003, pp. 84–102.

[53] M. Humbert, M. Manshaei, and J.-P. Hubaux, “One-to-n scrip systems
for cooperative privacy-enhancing technologies,” in Proceedings of the
49th Annual Allerton Conference on Communication, Control, and
Computing, 2011.

http://www.usenix.org/events/nsdi07/tech/piatek/piatek.pdf
http://github.com/shadow/
http://www.maxmind.com/
http://iplane.cs.washington.edu/data/data.html
http://www.netindex.com/source-data/
https://gitweb.torproject.org/torperf.git/

	Introduction
	Preliminaries
	Design
	Setup
	Coin Distribution
	Purchasing Guaranteed Winners
	Private Evaluation of Pseudorandom Functions
	Private Permutation Evaluation
	Protocol to Purchase Winners

	Circuit Setup
	Circuit Scheduling

	Analysis
	Efficiency
	Anonymity
	Incentives

	Experiments
	Network Model
	LIRA Prototype

	Related Work
	Conclusion
	Acknowledgements
	References

