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We introduce cryptographic protocols for securely and efficiently computing the cardinality of set union

and set intersection. Our private set-cardinality protocols (PSC) are designed for the setting in which a large

set of parties in a distributed system makes observations, and a small set of parties with more resources

and higher reliability aggregates the observations. PSC allows for secure and useful statistics gathering in

privacy-preserving distributed systems. For example, it allows operators of anonymity networks such as Tor

to securely answer the questions: How many unique users are using the network? and How many hidden services

are being accessed?

We prove the correctness and security of PSC in the Universal Composability framework against an active

adversary that compromises all but one of the aggregating parties. Although successful output cannot be

guaranteed in this setting, PSC either succeeds or terminates with an abort, and we furthermore make the

adversary accountable for causing an abort by blaming at least one malicious party. We also show that PSC

prevents adaptive corruption of the data parties from revealing past observations, which prevents them from

being victims of targeted compromise, and we ensure safe measurements by making outputs differentially

private.

We present a proof-of-concept implementation of PSC and use it to demonstrate that PSC operates with

low computational overhead and reasonable bandwidth. It can count tens of thousands of unique observations

from tens to hundreds of data-collecting parties while completing within hours. PSC is thus suitable for daily

measurements in a distributed system.

CCS Concepts: • Security and privacy→ Cryptography; Network security; Security protocols.

Additional Key Words and Phrases: secure computation; privacy-preserving measurement

1 INTRODUCTION
Measurements are essential to understanding the use of distributed systems and monitoring them

for abuse. In a privacy-preserving distributed system, such as an anonymity network, measurement

is complicated by the system’s privacy requirements. Storing records of system activity can pose

significant risks to the system’s users, and consequently the ethics of such techniques [51] have

been widely debated [57, 61]. Ideally, the measurements produced should satisfy strong privacy

definitions, and during the measurement process the system should protect sensitive intermediate

data.

For example, in an anonymous-communication system such as Tor [19], it is very helpful to

measure statistics such as the number of users, the popular applications used over Tor, and the

Authors’ addresses: Ellis Fenske, U.S. Naval Academy, Annapolis, USA, fenske@usna.edu; Akshaya Mani, Georgetown

University, Washington, USA and University of Waterloo, Waterloo, Canada, akshaya.mani@uwaterloo.ca; Aaron Johnson,

U.S. Naval Research Laboratory, Washington, USA, aaron.m.johnson@nrl.navy.mil; Micah Sherr, Georgetown University,

Washington, USA, msherr@cs.georgetown.edu.

Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee,

contractor or affiliate of the United States government. As such, the Government retains a nonexclusive, royalty-free right

to publish or reproduce this article, or to allow others to do so, for Government purposes only.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2471-2566/2022/5-ART25 $15.00

https://doi.org/10.1145/3477531

ACM Trans. Priv. Sec., Vol. 25, No. 4, Article 25. Publication date: May 2022.

https://doi.org/10.1145/3477531


25:2 Ellis Fenske, Akshaya Mani, Aaron Johnson, and Micah Sherr

number of errors that occur. With such information, users can better understand their anonymity,

policymakers can consider the value of anonymity, and network designers can identify its problems.

However, the privacy goal of the network would be undermined if detailed records were collected

of who uses the system, when it is used, and for what purposes. As other example applications,

structured overlay networks such as Chord [63] may wish to measure network activity without

exposing individual actions, and online services may want to know how many users they share

without revealing their identities.

Two general privacy technologies can help solve this problem: secure multiparty computation

protocols [47] (MPC) and differentially private mechanisms [24]. Generic MPC protocols can be

used by a set of parties to compute any function of their private inputs without revealing those

inputs. Differentially private mechanisms guarantee that the value they compute depends little on

any specific input, thereby only revealing information implied by the collection of inputs. Thus to

safely measure a distributed system, the members could execute a generic MPC protocol, using

their observations as input, in order to compute a differentially private measurement function [58].

However, generic protocols have relatively high computational and communication costs. Moreover,

this approach does not protect the observations being recorded by the parties to serve as inputs

to the secure computation, which could be revealed if such parties can be corrupted or otherwise

compelled to reveal their internal state during the measurement period.

Some specific protocols have been developed to more efficiently and securely compute aggregate

measurements in anonymity networks, discussed in detail in the following section. We extend

this line of work by presenting a protocol which is capable of privately measuring unique counts,

calculating private set cardinality operations for the set union and set intersection operations. In the

scenario we consider, a set of Data Parties (DPs) each observes some set, and we wish to compute the

size of the union or intersection of those sets. More formally, if there are d DPs with DPk observing

set Ik , we want to be able to privately compute |
⋃d

k=1 Ik | for set-union cardinality and |
⋂d

k=1 Ik |

for set-intersection cardinality. We assume that there exists a smaller set of Computation Parties

(CPs) that can be used to aggregate the observations of the DPs , which will improve efficiency and

allow us to tolerate failures of the DPs .
We seek to satisfy stringent privacy and security goals to make the protocol suitable even in

very adversarial settings, appropriate for a distributed system in which many of the parties may be

malicious. Anonymity networks are a key desired application of our protocols, and several active

attacks have been observed on the Tor network. To this end, we require that the protocol is secure

against an active adversary that can deviate from the prescribed protocol. Moreover, we desire

security against a dishonest majority of the Computation Parties, to ensure the security of user

data as long as at least one CP is honest. We seek composable security, so that measurement can be

repeatedly and concurrently run while maintaining security. We further target adaptive security

among the Data Parties such that corruptions during the lengthy measurement periods do not

reveal past observations. Adaptive security is particularly important for DPs as they may otherwise

be susceptible to a legal compulsion attack targeted at data stored about the observations they

make [26]. We also require that the protocol output satisfies differential privacy to ensure that

a securely computed function poses no privacy risk. Finally, we require that no Data Party can

prevent the protocol from completing successfully, and, while for efficiency we allow a Computation

Party to cause a failure, we require accountability of a responsible party so that the party can be

excluded and the protocol restarted.

We present the PSC protocol for private set-cardinality operations. PSC satisfies all our func-

tionality and security goals, and it does so in a way that is efficient and practical to be used for

distributed-system measurements, including especially measurements of anonymity systems such
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as Tor. PSC has two set-cardinality variants: one for set union and the other for set intersection. We

present the set-union variant and describe the changes needed to it for set intersection in Section 8.

We prove the correctness and security of PSC in the Universally Composable (UC) framework [11].

This proof methodology allows us to easily express the main security and privacy goals via a

single ideal functionality. It also guarantees that security is maintained even if the protocol is run

concurrently with itself or as part of a larger cryptographic system.

We additionally introduce an implementation of PSC, released as open-source software written

in memory-safe Go. To achieve greater efficiency, our implementation uses some subprotocols that

are not proven UC-secure, such as a verifiable shuffle [54] that is more practical than verifiable

shuffles proven secure in the UC model. With these subprotocols, our implementation can still be

proven secure in the classical (i.e. standalone) model and, as we demonstrate via at-scale evalua-

tion experiments, incurs only moderate bandwidth and computation costs and can be practically

deployed.

This paper expands upon an earlier version of this work [27] in manyways, including in particular

modifying the protocol to provide accountability, adding measures to prevent input modification,

and detailing how to accomplish set-intersection cardinality.

2 RELATEDWORK
We consider three main parallel lines of work related to our central problem: protocols designed to

measure anonymity networks, protocols designed to compute secure distributed set operations,

and fully generic multiparty computation protocols. Finally, we discuss related work surrounding

accountability properties in cryptographic protocols.

Privacy-Preserving Measurements of Distributed Systems. The PrivEx system of Elahi et al. [26]

uses partially-homomorphic aggregation and differential privacy [24] to privately collect statistics

about the Tor network [19]. PrivCount [40], which we extend in this work, improves upon PrivEx

by offering multi-phase measurements and also an optimal allocation of the ϵ privacy budget.

Historϵ [50] is also inspired by PrivEx and uses histogram-based queries to provide integrity

guarantees by bounding the influence of malicious data contributors. Melis et al. [53] present a

system to perform distributed item-frequency counting, with one application being computing

median statistics from Tor relays. It uses homomorphic encryption to securely aggregate count-min

sketches.

While these systems provide significant efficiency improvements over generic protocols, they

lack the ability to perform set-cardinality operations. For example, while PrivEx, PrivCount, and

Historϵ can answer the question “How many clients were observed entering the Tor network?”, they

cannot determine the number of unique clients (i.e. set-union cardinality). Similarly, while count-

min sketches can help determine the median number of clients across all entry relays, they cannot

determine the how many clients are seen at all relays (i.e. set-intersection cardinality).

Private Set Operations Protocols. Brandt suggests a protocol [8] very similar to the aggregate-

shuffle-rerandomize-decrypt scheme our CPs execute. However, our construction differs in a few

crucial parts: we need to include separate DP parties to provide the input that must be adaptively

secure and limit as much as possible their computational work, and in our protocol the parties jointly

generate noise to satisfy a differential privacy guarantee. Beyond these modifications, the bulk of our

contribution is a thorough proof of security of the protocol in the UC model (to make the proof go

through, we needed to add re-encryption during the re-randomization phase), a specific application

for the general theoretical protocol (making measurements in privacy-preserving systems like Tor),

and a functional implementation of the protocol alongside empirical data measuring computation

and communication costs gathered through experiments.
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Several protocols to securely compute set-union cardinality (or the related problem of set-

intersection cardinality) have been proposed [17, 25, 44, 62, 66] using a variety of techniques

including bloom filters, homomorphic encryption, sketches, and polynomial evaluation. However,

none of these provides all of the security properties that we desire for distributed measurement in

a highly-adversarial setting: malicious security against a dishonest majority, adaptive security for

Data Parties, and differentially-private output. Similar protocols have been designed to securely

compute set operations [29, 37, 38], but these protocols output a set rather than its cardinality.

Secure Multiparty Computation. General secure multiparty computation (MPC) protocols can

realize any functionality including set cardinality, even in the UC model [1, 12]. Moreover, advances

in efficient MPC have been made in the multi-party, dishonest-majority, active security setting that

we require [16, 46, 49, 69]. However, these works assume that the same parties that have the inputs

perform the computation and thus do not describe how to securely transfer inputs if these parties

are different. Moreover, such protocols make use of a relatively expensive “offline” phase, while we

intend to allow for measurements that are run on a continuous basis.

Wails et al. [68] have explored how to apply these generic MPC protocols in the context of

measuring the Tor network. They present new protocols to transfer inputs from a large number of

observing parties to a smaller number of computation parties. They show how to securely compute

approximate set-union cardinality using a sketch (viz. LogLog [21]). While their construction

does not provide differential privacy, Choi et al. [14] show that sketch-based counts can be made

differentially private with high accuracy. Compared to PSC, this approach of using sketches and

generic MPC protocols has the advantage of scaling well to large counts (e.g. billions), but it

has the disadvantages of poor accuracy when the count is small and error from noise that is

proportional to the count rather than constant. These disadvantages arise from the use of sketch-

based counting. Furthermore, the generic MPC protocols allow an adversary to abort the protocol

without accountability, which enables a continuous denial of service.

Accountability. To handle denial of service attacks on secure multiparty computation protocols,

there has been recent work developing protocols that can identify to all honest parties a malicious

party who has prevented the protocol from terminating successfully. This type of termination

is called identifiable abort, and there are generic multiparty computation protocols with this

property [2, 3, 32, 39]. Taking another approach to accountability, some protocols provide a stronger

public-accountability property by producing a proof of malicious behavior on some trusted publicly

readable trusted ledger or bulletin board [3, 43]. While all of these contributions using either

approach give accountable methods for general private measurements of any kind, including those

we wish to collect, these contributions do not provide implementations or experiments, and require

that the parties providing inputs are those that perform the computations, meaning using them

for the applications we intend would incur heavy computation and communication costs to our

Data Parties. Additionally, these approaches do not consider the problem of adaptive corruptions

intended to extract measurement data during a long collection period, a property we consider to be

crucial for many typical use cases such as measuring anonymous communication systems like Tor.

3 BACKGROUND
Before describing the problem and our solution, we briefly review some concepts and background

that are necessary for understanding the protocol, Private Set-Union Cardinality (PSC).

Differential Privacy. Differential privacy [24] is a privacy definition that offers provable and

quantifiable privacy of database queries. Differential privacy guarantees that the query responses

look nearly the same regardless of whether or not the input of any one user is included in the
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database. Thus anything that is learned from the queries is learned independently of the inclusion of

any single user’s data [41]. Several mechanisms have been designed to provide differential privacy

while maximizing accuracy [7, 23, 52, 56].

More formally, an (ϵ , δ )-differentially-private mechanism is an algorithmM such that, for all

datasets D1 and D2 that differ only on the input of one user, and all S ⊆ Range(M), the following

holds:

Pr [M(D1) ∈ S] ≤ eϵ × Pr [M(D2) ∈ S] + δ . (1)

ϵ and δ quantify the amount of privacy provided by the mechanism, where smaller values of each

indicate more privacy. Dwork et al. [22] proves that binomial noise, that is, the sum of n uniformly

random binary values, provides (ϵ,δ )-differential privacy for queries that each user can affect by at

most one when

n ≥

(
64 ln(2/δ )

ϵ2

)
(2)

Eq. 2 presents a trade-off between privacy and utility, an issue inherent to differential privacy. Put

alternatively, for the privacy level given by ϵ and δ , Eq. 2 yields the amount of binomial noise that

is required to be added to the output of a query that each user can change by at most one. In this

paper, we use this binomial noise technique to achieve differential privacy.

Termination and Accountability. In any multiparty computation protocol, weak trust assumptions

like a dishonest majority preclude properties like guaranteed output delivery [39]. This means even

if a protocol guarantees its output is accurate, malicious parties may prevent the output from being

produced at all by causing the protocol to hang indefinitely or to abort. Exacerbating this problem,

dishonest majority protocols cannot guarantee fairness, meaning malicious parties could learn the

result before choosing whether to allow a protocol to successfully conclude.

As a solution to this, many protocols introduce an accountability guarantee called identifiable

abort [2], which guarantees that either the correct output or the identity of some number of

malicious parties is given to the honest parties at protocol termination. This allows honest parties

to identify a source of failure and take appropriate steps to remedy the problem: identify network

failures, rerun the protocol excluding certain parties, or publicly levy accusations of malicious

behavior.

This guarantee only mitigates denial of service attacks in practice if a protocol comes with

a guarantee of termination within finite time, or malicious parties could indefinitely delay the

accountability messages as well as the intended protocol output. This is handled often in literature

by defining protocols in the synchronous communication model, where messages are sent in a

sequence of explicit synchronized communication rounds. In every round, each party may send

messages to any set of other parties, and these messages are guaranteed to be delivered to their

recipient at the end of that round. Synchronous, round-based communications can be constructed

explicitly using bounded delay and synchronized clocks [42].

Zero-Knowledge Proofs. PSC uses a few types of zero-knowledge proofs demonstrating knowledge

and relationships between elements in some group G of order q with respect to some generator д.
For example, we require a proof of knowledge of the discrete log of y = дx , x ∈ Zq . In general, a

zero-knowledge proof system [31] is a protocol between a prover P and verifierV in which the

prover demonstrates the truth of some statement without revealing more than that truth, where

the statement may be, for example, the existence or knowledge of a witness to membership in a

language.

PSC uses many Σ-protocols [15], which are proofs of knowledge that are three-round interactive

protocols starting with a commitment by the prover, followed by a random challenge from the
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verifier, and ended by a response from the prover. Σ-protocols are honest-verifier zero knowledge

(HVZK), that is, their transcript is simulatable assuming the verifier behaves honestly.

PSC also makes use of verifiable shuffles [55]. Informally, a verifiable re-encryption shuffle

takes as input ciphertexts, outputs a permutation of a re-encryption of those ciphertexts, and

proves that the output is a re-encryption and permutation of the input. There are two security

requirements for verifiable shuffles: privacy and verifiability. Privacy requires an honest shuffle

to protect its secret permutation. Verifiability requires that any attempt by a malicious shuffle to

produce an incorrect output must be detectable. Several protocols for verifiable shuffling have been

proposed [4, 30, 34, 54].

The Σ-protocols we use in PSC and the verifiable shuffles with public-coin interactive proofs can

be made non-interactive using the Fiat-Shamir heuristic [28], in which the random challenges are

generated by the prover by applying a cryptographic hash function. Non-interactive proofs (both

shuffles and Σ-protocols) can be sent to many verifiers through a broadcast, but PSC additionally

uses interactive multi-verifier proofs, where a single proof is sent to multiple verifiers such that all

honest verifiers agree on the statement to be proved and the correctness of the proof to provide

accountability.

Broadcasts. PSC uses an accountable broadcast communication functionality. The security prop-

erty that we require for this broadcast is that honest parties agree on the message from the

broadcaster, whether it is an equivocation, where a broadcaster sends distinct messages to different

parties, a single consistent message to all parties, or no message at all. Dolev and Strong [20] give a

protocol that satisfies this property assuming synchronous point-to-point communication channels

in t + 1 rounds, where t is the number of malicious parties. For protocols with many parties the

round- and communication-complexity of this primitive make it too inefficient to be practical if

deployed naïvely.

Universal Composability and Setup Assumptions. PSC, like many complex cryptographic protocols

is constructed from smaller cryptographic primitives and subprotocols. The sequential composition

theorem [31] justifies constructing protocols modularly in this way, but for protocols to remain

secure under general concurrent composition (i.e. simultaneously with arbitrary other protocols,

even those designed specifically to interact with them) we require a stronger property. In 2002,

Canetti gave a composition theorem for this case under a framework called Universal Compos-

able (UC) security [12]. This composition theorem guarantees that compositions of UC-secure

subprotocols are UC-secure.

Given impossibility results for UC secure protocols without setup assumptions, UC protocols are

often defined in the Common Reference String (CRS) model, under which any function of a given

collection of parties’ private inputs can be securely computed [12]. In particular, there are natural

constructions of UC-secure zero-knowledge proofs from Σ-protocols [44] and UC-secure verifiable

shuffles in this model [70]. Protocols that meet this standard of security can be inefficient, so in

practice many protocols rely on stronger setup assumptions and provide weaker composability

guarantees. We highlight the Random Oracle Model, where all parties have access to a random

oracle that returns random strings to all queries, but must return the same result given two identical

queries. In the Random Oracle Model, the Fiat-Shamir heuristic constructs auxiliary-input zero-

knowledge proofs [5], which are secure under sequential composition [33]. Random Oracles are

usually instantiated with hash functions, a leap which cannot be rigorously justified for any real

hash function [59] but which is widely deployed in practice.
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4 PROBLEM AND SETTING
We consider the problem of distributed private measurement. In particular, we define a finite set of

observations, which could be explicit identifiable events or abstract counters intended to estimate a

count of these events (e.g., in a hash table), to be collected across a large distributed set of d Data

Parties (DPs). Each DP collects its own set of observations, but we wish to learn how many distinct

events has occured over a given time period across all DPs. We wish to calculate the cardinality of

the set-union and set-intersection of these observations.

We collect data on these observations during a collection period, during which DPs record

observations. After the collection period, the DPs participate in a distributed protocol phase that

produces the cardinality of the set-union or set-intersection of the DPs’ observations. The protocol

is privacy-preserving, which informally means that (i) no information collected by an honest DP is

ever exposed and (ii) an adversary (defined below) cannot identify any individual data from the

aggregated result (i.e. the cardinality).

Additionally, we desire accountability, meaning that the honest parties can identify some dis-

honest party if the execution fails. (We provide a more formal definition of accountability later in

the paper.) Importantly, our accountability property does not cover the veracity of DPs’ reported

observations—a malicious DP can fabricate or omit an observation. Rather, our aim is to detect

parties that interfere with the correct computation of the aggregated result.

4.1 System Model
To solve this problem, we introduce a set ofm Computation Parties (CPs) whose purpose is to

offload a majority of the computational- and bandwidth-work from the DPs, and to perform a

multi-party computation to aggregate, process, and clean the data. We assume that d ≫m so that

the number of DPs is much larger than the number of CPs.

We further assume that DPs are limited in terms of computational resources and bandwidth, so

we measure efficiency in this setting by aggregate computational and communication resources

consumed but also by the extent to which resources consumed by the DPs for measurement

purposes is minimized.

We consider the problem in the synchronous communication model and do not specifically prove

results about or implement precise synchronized rounds, leaving them abstract for the purpose of

exposition, reasoning about security properties, and prototype implementation.

4.2 Threat Model
We consider in our threat model arbitrary adversaries who corrupt any number of DPs and all

but one of the CPs, and consider primarily adversaries who wish to learn private data: which

observations have been recorded, and by which DPs. Therefore, it is crucial that an adversary who

adaptively attacks DPs during the collection period not does learn more private data by attacking

DPs who execute our measurement protocol than that same adversary could learn by attacking

DPs who do not, so any satisfactory measurement protocol must resist adaptive attacks against

DPs during the collection period.

Further, we expect the protocol to be run repeatedly (e.g., to be run continuously with collection

periods beginning and ending simultaneously). This means even simple count data can reveal

a large amount of private information over time, especially against active adversaries who can

insert inputs through malicious DPs and observe differences in the protocol output. This means the

measurements released by the protocol must be differentially private.

Finally, DPs do not always exclusively take measurements, and often these measurements

are associated with a large, complex cryptographic protocol whose execution is the primary
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purpose of the DPs. Further, the protocol is intended to be run concurrently with other copies of

itself (measuring different events, or over different time periods). This means the protocol should

be privacy-preserving even when run concurrently with other arbitrary protocols, meaning a

measurement protocol should be secure in the UC model.

CPs should be taken from a distributed set of parties not likely to collude in order to recover the

sensitive private data they process, and we formalize this intuition by assuming at least one of the

CPs is honest. We do not consider the problem of adaptively corrupted CPs.

While we accept that malicious DPs may report false data, we may perform repeated sampling of

DPs among those possible in order to provide robust measurements over time, or exclude obviously

malicious DPs (those who report having observed every event in order to produce a trivial result

from a Set-Union Cardinality measurement, for example). However, since CPs participate in every

round, it is important that CPs may not adjust the results or prevent the protocol from completing

without consequences. This takes the form of a formal accountability property in the dishonest-

majority setting, which guarantees honest parties agree on a set of malicious parties to blame in

the case the protocol fails to terminate successfully.

4.3 Problem Statement
We define the problem we wish to solve as follows:

Definition 4.1. Fixm CPs, d DPs, b possible observations, and a time period T . Represent the

observations made by each DPj duringT as
®O j
. We define the Private Set-Union Cardinality Problem

(with Set-Intersection defined similarly) as calculating

�� ⋃ ®O j
��
and distributing this result to all CPs,

subject to the following formal and informal constraints:

• The result should be accurate, meaning that malicious CPs may not alter the data submitted

by honest DPs or selectively exclude data submissions.

• The result should be private, meaning that no adversary may learn information about indi-

vidual observations of the DPs exceeding that allowed by the Differential Privacy guarantee.

In particular, we require that compromise of DPs during the collection period reveal no

information about the observations recorded pre-compromise.

• The solution should be efficient, meaning that DPs involved in the measurement process do

not consume excessive resources and that CPs can output a measurement within hours of

the termination of the collection period in a practical, real-world setting.

• The solution should be accountable, so every time the protocol is invoked, it terminates

successfully or all honest CPs come to consensus on the identity of the CP or CPs who

prevented successful termination.

• The solution should be secure, meaning it satisfies all above requirements so long as there is

one honest CP, and be accompanied by a thorough proof of security.

• The solution should be practical enough to implement and deploy in practice today, and rely

only on well-tested and well-understood cryptographic assumptions.

In the following, we present, implement, evaluate, and prove secure a protocol that solves the

above PSC problem.

4.4 Solution Overview
We provide the solution in three parts. First, we describe the protocol in a hybrid model using

abstract ideal functionalities. Then we proceed along two parallel paths:

(1) A proof of security for the required primitives in the Universal Composability (UC) setting,

followed by a proof of security for the hybrid-model protocol, both in Section 6.
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(2) An implementation of the protocol using heuristically secure primitives (namely, the Fiat-

Shamir Heuristic) for the purpose of practicality and efficiency, open-sourced and evaluated

for efficiency in Section 7.

The hybrid-model proof presented in Section 6.8 then applies to both the implemented protocol

and as a proof of the existence and security of an unimplemented theoretical UC-secure protocol

with the same structure as our implementation.

In particular, making replacements as described below, we can convert a proof of security in

the UC framework in the Common Reference String (CRS) model to a proof of security in the

random oracle model under sequential composition. The replacements primarily rely on the fact

that the Fiat-Shamir heuristic provides non-interactive Zero-Knowledge Proofs in the Random

Oracle model [5], and we may then apply the sequential composition theorem [31] in place of the

UC composition theorem. Explicitly:

• The broadcast functionality we use is realized by the Dolev-Strong protocol, which can be

implemented with UC signatures, but in the implementation we use Schnorr signatures and

apply optimistic optimizations to the protocol as described in Section 6.1.1.

• We require one-to-many Σ-protocols in our proof. These are constructed by compiling Σ-
protocols to UC secure accountable one-to-many Zero-Knowledge Proofs as described in

Section 6.3, but for implementation purposes we simply apply the Fiat-Shamir heuristic and

send non-interactive zero-knowledge proofs over our broadcast channel.

• In the UC setting, we use the shuffle provided by Wikström and outline how it can be made

accountable. For implementation purposes, we use an implementation of the shuffle given by

Neff [54] and again apply the Fiat-Shamir heuristic. We use this shuffle because it is simple

and the code is available and open source, and because additional protocols are required to

construct public parameters in Wikström’s shuffle that cannot be generated in a natural way

by public coins. This is discussed further in Section 6.4.

5 PROTOCOL DESCRIPTION
At a high level, the protocol proceeds in two main sections, which we separate into seven phases.

The goal is to construct a vector of noisy shuffled counters, containing one component for each

possible event and additional components for noise. The counters are ciphertexts that are zero or

nonzero, representing a binary value. These counters are split into two shares, an initial encrypted

blind and a corresponding plaintext counter which DPs modify, recording observations obliviously.

Once submissions are complete, the CPs insert encrypted noise counters, shuffle the counters,

and clean them, removing non-binary information contained within the plaintext counters in a

process called rerandomization. Finally, the counters can be decrypted, with the number of nonzero

counters in the final tally giving the final result. We visually present the protocol in phases in

Figure 1, and continue our high-level description in more detail as follows, noting that while we

give all phases in sequence in our discussion, implementation, and proof, the data collection period

provides a natural “offline phase” where CPs remain idle, meaning that Noise Generation can be

trivially executed in parallel with data collection.

(1) Key Generation. In the Key Generation phase, the CPs generate a joint public session key

for each run of the protocol and distribute it to all DPs.

(2) Data Collection. DPs construct and distribute to CPs an encrypted blind and corresponding

proof of knowledge of cleartext for each counter, which represent the set of observable events

to be measured, storing the negation of each value in plaintext. During the data collection

period, DPs record an observation by replacing its corresponding counter with a random

value.
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Computation Parties
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Fig. 1. An overview of the major steps of the PSC protocol — the white, gray, and black square represent

plaintext, blind (or blinded data), and noise respectively. The lock represents that the underlying data (i.e.,
the blinds, noise, or plaintext) is encrypted.

(3) Input Submission. When the collection period is over, the DPs broadcast their counters to

the CPs, who jointly encrypt and sum these counters with the blinds submitted previously. If a

DP has not modified its counter, the recorded counter and plaintext inside the corresponding

blind will cancel. Otherwise, their sum will be some random nonzero value.

(4) Noise Generation. CPs perform a verifiable shuffle of encryptions of the pair (0, 1) n times

and extract the first component of the resulting shuffled vector to add n elements of binomial

noise to the aggregate vector of ciphertext counters.

(5) Shuffling. CPs perform a verifiable shuffle of the noise-and-data vector, mixing the generated

noise with the true counter values.

(6) Rerandomization-Decryption. CPs rerandomize, re-encrypt, and decrypt the shuffled

vector of data and noise to ensure the plaintexts carry no information beyond the parity

property they represent in the protocol.

(7) Output. The last CP to perform this decryption broadcasts the plaintexts and the number of

nonzero elements is the noisy cardinality.

5.1 Primitives and Assumptions
We define two groups of parties, Data Parties or DPs, who make observations from some set of

possible observations during a collection period, and Computation Parties or CPs who receive,

aggregate, clean, and publicize the privacy-safe observation statistic. We make distinct adversarial

assumptions with respect to the two groups: for DPs, we work in the erasure model with adaptive

corruptions, assuming that an adversary can compromise a DP during the collection period but

requiring that it learns nothing about measurements recorded and erased before the corruption.

For CPs, we work in the static corruption model and make no assumptions about secure erasures.

We denote a vector by ®v , and write ®vi to mean the ith component of ®v , with superscript notation

®vi indicating a sequence of vectors. We separate the protocol into phases, each containing some

number of synchronous communication rounds. Often, these phases will be split into subphases.

Throughout, we assume д is a generator of a large group G of prime order q for which the

Decisional Diffie Hellman assumption holds. We use as our primary encryption mechanism the
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exponential version of ElGamal, where rather than a group element дm as the plaintext, we consider

the plaintext to be the integerm itself. This scheme is additively homomorphic, but now requires

calculating a discrete log for decryption as in the encryption scheme outlined by Benaloh [6]. For

our application, plaintexts encode binary values so we are interested only in whether or not a

plaintextm = 0, which is trivial to determine given дm so decryption poses no problem for us. We

by convention write an ElGamal encryption of a messagem as Ey (r ;m) = (д
r ,yrдm) and freely

refer to r as its randomization factor and to дr as its “first component”. Throughout, we refer to

three homomorphic manipulations of ElGamal ciphertexts, which can be constructed only using

knowledge of the public parameter y:

• Re-Encryption, where a ciphertext has its randomization factor shifted by a constant additive

factor s without modifying the plaintext, converting a ciphertext (дr ,yrдm) → (дr+s ,yr+sдm).
• Rerandomization, where a ciphertext has its randomization factor shifted by a scalar mul-

tiplicative factor s , applying the same multiplication to the plaintext component, so that a

ciphertext (дr ,yrдm) → (дr s ,yr sдms ).

• Aggregation, where an arbitrary vector of ciphertexts encrypted to the same key are ho-

momorphically added together by taking the componentwise product of each of the two

components.

We make use of the following primitives, all in the synchronous communication model:

• F
BC
, an accountable consensus broadcast protocol, given in Figure 2.

• F
SKGD

, a functionality encapsulating the sub-protocol for Session Key Generation and Distri-

bution, producing and distributing a joint ElGamal public session key shared by the CPs to

all parties. This is given in Figure 5.

• F
ZKP-DL

, F
ZKP-S

, F
ZKP-RRD

, one-to-many zero-knowledge proofs for knowledge of a discrete

log, a shuffle, and for a combined re-encryption, rerandomization, and decryption operation.

These are all implemented with a general zero-knowledge proof functionality given in Figure

3 and each of these specific proofs is realized by a different protocol, given in detail in Section

6.

We provide the security proofs for each of these functionalities including their accountability

properties in Section 6 and provide implementation details in Section 7.

Beyond cryptographic assumptions, we assume all parties have permanent signing keys through

a Public Key Infrastructure and use these to construct signatures in order to send authenticated

messages. Keys for encryption are generated on a per-session basis for each protocol run so we

describe their construction explicitly. The zero-knowledge proofs are given in a hybrid model using

ideal functionalities for commitments that may be realized in the Common Reference String (CRS)

model.

5.2 Protocol
At a high level, the protocol proceeds in a sequence of phases, where the session keys are established

and blinds are set by the DPs to guard against adaptive corruptions. The data is then collected over

some period, and then transmitted to the CPs. The CPs proceed in a three-step process to prepare

the data for release: adding random noise to provide differential privacy, shuffling the noise and

data together, and “rerandomizing” the nonzero elements that encode 1 so they do not carry any

information about the exact representation selected by the DPs.

More precisely, we define the protocol πPSC in the (F
BC
, F

SKGD
, F

ZKP-S
, F

ZKP-RRD
, F

ZKP-DL
)-hybrid

model by describing each phase.

(1) Key Generation.
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• (Round 1). CPs send (GenerateKeys) to F
SKGD

. CPs and DPs wait to receive the public

session key y from F
SKGD

.

• (Blame). CPs receive either a set of session keys from F
SKGD

or a blame message. If a CP

receives a blame message, they output it and terminate.

(2) Data Collection.
• (Round 1). Each DPj generates random β j

1
. . . β jb ∈ Zq , encrypts each, and collects these

ciphertexts into a vector
®β j . Each DPj broadcasts ®β

j
to all CPs using F

BC
.

• (Round 2). Each DPj proves knowledge of the cleartext for each component of
®β j by proving

knowledge of the discrete log of the first component of each ciphertext, r ji using FZKP-DL
to all CPs. Each DPj saves a vector of plaintexts ®c

j
by ®c ji = −β

j
i and erases all information

about
®β j and the proofs from memory.

• (Collection Period). While the collection period is active, DPj records observing event i
upon receiving a message from the environment of the form (Observation, i) by setting

®c ji ← r for r random in Zq . This phase ends when the collection period is complete.

• (Blame). If a broadcast or one-to-many proof from a DP fails, the CPs exclude the input

from that DP during this phase and for the remainder of the protocol. If a CP is blamed,

the protocol terminates.

(3) Noise Generation. For every component i of ®n, all CPs set ®N i0
to be the pair of deterministic

encryptions to y of 0 and 1 using first component д1. CPs calculate ®N im
inm rounds:

• (Round ij, i ∈ 1..n, j ∈ 1..m).

– (Subround ij1). CPj shuffles ®N i(j−1) = Shuffle( ®N i(j−1), ®r i j ,π i j ) and sends ®N i j
to F

BC

with CPj generating two random integers ®r i j ∈ Z2q and a random permutation π i j
on

two elements.

– (Subround ij2). CPj sends ((ZKP), ( ®N
i(j−1)

, ®N i j
), (®r i j , π i j

)) to F
ZKP-S

.

– (Subround ij3). CPs continue iff they receive (Proof, CPj , ( ®N
i(j−1)

, ®N i j
)).

• CPs take the first ciphertext in the resulting vector, setting ®ni = ®N
im
1

• (Blame). In each round j all CPs expect to begin with a known ciphertext, receive a message,

and a proof that verifies. If a CPj uses the incorrect ciphertext, is blamed through F
BC

sending the shuffled ciphertext, or the proof fails, CPs blame CPj and exit.

®n is then a vector of length n.
(4) Input Submission.
(a) (Round 1). Each DPj sends its plaintext vector ®c

j
to all CPs using F

BC
.

(b) (Round 2). CPs verify they received vectors of ciphertexts of the correct length and that

the proofs from the Data Collection phase verify from each DP. For each remaining DPj ,

CPs encrypt each component of the vector of counters ®c j with the session key y, and
componentwise homomorphically add the ciphertexts to construct a new aggregate data

vector
®d : ®di =

⊕
j

(
b ji ⊕ (д,y · д

c ji )

)
where ⊕ denotes homomorphic addition of plaintexts.

(c) Blame cannot arise in this phase since DPs cannot be blamed, only excluded from the tally.

(5) Shuffling. All CPs set ®s0 as the concatenation of ®n and
®d .

(a) (Round j ∈ 1..m).

(i) (Subround j1). CPj shuffles ®s j = Shuffle(®s(j−1), ®r j ,π j ) and sends ®s j to F
BC

using random

integers ®r j ∈ Z(b+n)q and a random permutation π j
on b + n elements.

(ii) (Subround j2). CPj sends (ZKP, (®s
j
, ®s(j−1)), (®r j , π j

)) to F
ZKP-S

.

(iii) (Subround j3). CPs continue iff they receive (Proof, CPj , (®s
j
, ®s(j−1))), otherwise they

blame CPj .
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(b) (Blame). The phase is structured identically to Noise Generation so blame arises in exactly

the same way.

(6) Rerandomization-Decryption. CPs set ®p0 ← ®sm .
(a) (Round j ∈ 1..m).

(i) (Subround j1). CPj selects random ®σ
j
, ®r j ∈ Z(b+n)q . For each i , denote the ciphertext

®p(j−1)i as (ai ,bi ). Then CPj calculates for each i , αi ← (aiд
σi )ri If αi is the identity

element, CPj restarts subround j1 with fresh random values. Otherwise, CPj calculates

βi = (biy
σi )ri α

−x j
i and sets ®p ji ← (αi , βi ) and sends ®p j to F

BC
.

(ii) (Subround j2). CPj sends (ZKP, (yj , ®p
j , ®p(j−1)), (®σ j

, ®r j , x j )) to F
ZKP-RRD

.

(iii) (Subround j3). CPs continue iff they receive (Proof, (yj , ®p
j
, ®p(j−1))), the first component

of ®p ji is not the identity element, and the yj in this message is the same as the recorded

yj from key exchange, otherwise they blame CPj .

(b) (Blame). CPj is blamed in this round if CPj is blamed by F
BC

during subround j1, if the

proof fails to verify or appear in subround j2, or if the first element of ®p ji for any i is the
identity.

(7) Output. CPs count the number of nonzero plaintexts in the vector ®pm and subtract the

expected number of noise counters n/2 to output the final measurement.

6 SECURITY PROOF
6.1 Consensus Broadcast
While certain signed messages may be used as proof of malicious behavior, in order to provide

a robust accountability property against denial of service attacks we require a method by which

parties can agree on whether not a given message has or has not been sent, which means we require

consensus broadcast, encapsulated in a broadcast functionality F
BC

defined in Figure 2. To achieve

a consensus broadcast, we use the Dolev-Strong protocol.

F
BC

(1) (Round 1) Wait for a message from the broadcaster B.
(2) (Round 2) If B sent a messagem, sendm to all parties and exit. Otherwise, send (Blame,

B) to all parties and exit.

Fig. 2. F
BC

, the ideal broadcast functionality.

6.1.1 Dolev-Strong. The Dolev-Strong protocol is thoroughly described and proved correct by the

authors [20], in that all parties come to consensus on the (possibly empty) set of messages sent by B.
For our specific application, when the size of this set exceeds 1 for any honest party it may simply

send these two messages to all parties and terminate, blaming the broadcaster for equivocating. We

briefly sketch the protocol below for completeness and add modifications required to include the

blame messages, and finally describe optimizations that will increase performance in the case that

malicious behavior does not occur.

(1) The broadcaster B sends (m, Sign(M)) to all parties, outputs m and terminates. All other

parties Pj initialize a set acceptj .
(2) For rounds j ∈ 1..m,

• Upon receiving a messageM with valid signatures from j distinct parties (including B) of
M , addM to the set accept.
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• If the cardinality of accept increased this round, sign up to two new additions to accept

chosen arbitrarily and send these messages with all of their signatures to every party in

the next round.

(3) In roundm + 1, if there is only one message in accept, output it. Otherwise, output (Blame,

B).

Optimizations. We observe that in the scenarios we intend to deploy the protocol, the number of

CPsm is small, and since the protocol has an accountability property, there is a cost to malicious

behavior (e.g., being removed as a participant in the protocol in an out-of-band process) so this

behavior should be uncommon. In this case, we can optimize the broadcast protocol by having each

party explicitly indicate to each other party in a given round when there is no message to send with

a “heartbeat” message. This optimization allows for an all-honest group of CPs to quickly complete

a broadcast without waiting for m rounds to complete, at the cost of increasing the communication

cost of the protocol with these heartbeat messages proportional tom2
per-CP.

In addition, we can optimistically hope that the broadcaster sends the data: when a non-

broadcaster party echoes the message to another party, they can simply echo the hash, and let the

party respond as to whether or not it has already received the message. If so, nothing needs to be

done with this message so we are done. If not, the sender sends the full message as well.

6.2 Rerandomization-Decryption Σ-Protocol
We outline and prove correct a Σ-protocol that proves a CP has performed a rerandomization, a

re-encryption and a partial decryption.

Theorem 6.1. Suppose we have a ciphertext (A,B), with д,yi ,y publicly known with yi = дxi ,
y =

∏
yi and we wish to present (α , β) as a re-encryption rerandomization and partial decryption of

(A,B) so that α = (Aдσ )r , β = (Byσ )rα−xi for some random shift value σ and rerandomization value

r and the private key xi of party i . Then A,B,α , β ,д,y are known to both the prover and the verifier.

We describe the proof:

(1) The Prover P selects t1, t2, t3 at random and sends T1 = At1дt2 , T2 = Bt1yt2α t3 , T3 = д
t3

(2) The Verifier V sends a random challenge c to P .
(3) The Prover sends

r1 = rc + t1 r2 = σrc + t2 r3 = −xic + t3

(4) The Verifier accepts the proof if and only if the following three equations hold:

Ar1дr2 = αcT1 Br1yr2α r3 = βcT2 дr3 = y−ci T3

The above interactive proof is an HVZK proof that proves knowledge of r ,σ ,xi such that the equations

above for α , β hold.

Proof. (1) Completeness. The proof scheme is clearly complete: P knows or generates

r ,σ , t1, t2, t3,−xi so that it can properly generate r1, r2, r3. Given these values, it is easy to see

the three equations hold.
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(2) Special Soundness. Suppose the prover provides two proofs with the same commitment

values t1, t2, t3, with challenges c1 and c2. Then we have:

r1 = rc1 + t1 r ′
1
= rc2 + t1

r2 = σrc1 + t2 r ′
2
= σrc2 + t2

r3 = −xic1 + t3 r ′
3
= −xic2 + t3

Then it is easy to see that r =
r1−r ′

1

c1−c2
and then σ =

r2−r ′
2

r (c1−c2)
and that −xi =

r3−r ′
3

c1−c2
so that special

soundness is satisfied.

(3) Honest Verifier Zero Knowledge.We define a simulator as follows: The simulator behaves

as an honest prover does until it receives c , then rewinds V , selects random r1, r2, r3 and sets

T1 =
Ar1дr2

αc
T2 =

Br1yr2α r3

βc
T3 =

дr3

yci
Since V is an honest verifier, it, given the same randomness, provides the same challenge c
and the equations required for V to verify both hold and the simulation is successful.

□

Finally, having provided the Σ-protocol and proof, we apply the compiler from Section 6.3 to

convert it to an accountable UC secure protocol which UC-realizes the functionality defined in

Figure 3, parameterized by the group element д, joint public key Y , and public keys yi .

6.3 Accountable Σ-Protocols
In order to satisfy the desired accountability property for the CPs we provide accountable zero-

knowledge proofs. A natural way to solve this problem is with a non-interactive zero-knowledge

proof. While there are general non-interactive zero-knowledge proof constructions for any re-

lation secure in the UC model [35] without a random oracle, they are theoretical. Instead, we

provide one-to-many zero-knowledge proofs for the computations in the protocol which provide

an accountability property with respect to the other participants in the protocol, but not public

verifiability. Hazay and Nissim present a compiler which converts any Σ-protocol into a UC-secure

zero-knowledge proof. Given an authenticated broadcast channel, we follow this approach and

provide a similar compiler which converts any Σ-protocol into an accountable UC-secure one-

to-many zero-knowledge proof. The two pieces required for this are a coin flipping protocol and

a commitment protocol, both of which must be made accountable against faulty messages from

CPs as well as instances where CPs prevent the protocol from completing by simply not sending

messages required for the protocol to continue.

We obtain termination through a broadcast channel realized by the Dolev-Strong protocol [20],

so that in every round all honest parties agree on the message sent by a broadcaster. This message

may be empty or the broadcaster may equivocate, but in either case all honest parties agree that

the broadcaster is faulty and the honest parties blame the broadcaster and exit.

The one-to-many commitments outlined in Canetti [12], F 1:M

MCOM
, are non-interactive and so can

be sent over the broadcast channel. We use these commitments over the broadcast channel to

construct an accountable multi-party coin flipping protocol, F
COIN

. The construction, functionality,

and proof are natural and straightforward, and so we present these details in Appendix A.

Finally, we outline how the UC-secure zero-knowledge proof of a shuffle given by Wikström [70]

can be constructed with these two accountable primitives as well, providing an accountable UC-

secure verifiable shuffle.

We realize the following zero-knowledge proof functionality given in Figure 3 with the protocol

provided in Figure 4, all parameterized by a relation R. We assume knowledge of the statement x to
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be proved by all parties when the functionality is invoked, and that the identity of the prover is

known and fixed.

F R
ZK

• (Round 1). Wait to receive the message (Participate) from each non-prover party, and

a single message from the prover.

• Drop messages from P that are not of the form (ZKP, x ,w) with R(x ,w) and any other

message from any non-prover CP not of the form (Participate).

• (Round 2). If the set L of CPs from which the functionality has not received a valid

message is non-empty, broadcast (Blame,L). Otherwise, broadcast (Proof, x ).

Fig. 3. F R
ZK

, the ideal functionality for an interactive one-to-many zero-knowledge proof

πR
Given a security parameter n, a statement x known by all parties, and a Σ-protocol π for the

relation R. For clarity, we split the protocol into four rounds, but note that Rounds 1 and 3

consist of multiple formal communication rounds.

• The prover runs π with the statement x and its witnessw , selecting n random commit-

ments and n random challenges, then calculating the response for each of these pairs.

Then the prover rewinds each of these execution and uses fresh random challenges for

each, calculating the correct response to each of these rewound executions as well. From

these executions it recovers:

– n distinct (commitment) messages as α1, . . . ,αn
– n pairs of random challenges (β0

1
, β1

1
), . . . , (β0n , β

1

n) with β0i , β1i for each i
– n pairs of responses (γ 0

1
,γ 1

1
), . . . , (γ 0

n ,γ
1

n) such that for each i , (αi , β
0

i ,γ
0

i ) and (αi , β
1

i ,γ
1

i )

both form valid transcripts for π .

• (Round 1) The prover sends vectors ( ®α , ®β0, ®β1) to F
BC

and commits individually to each

component of the vectors
®γ 0
,
®γ 1
using F 1:M

MCOM
.

• (Round 2) After receiving a message of the form ( ®α , ®β0, ®β1) from F
BC

on behalf of P

and 2n receipts from F 1:M

MCOM
, each verifier confirms that there are no duplicate values in

the vector ®α and that for every i , β0i , β1i . If any of these checks fail, output (Blame, P )
and exit. Otherwise, every party sends (GenerateCoins) to F

COIN
.

• (Round 3) Upon receiving
®b from F

COIN
, P opens for each i , γ bii to all participants.

• (Round 4) Verifiers check that for each i , (αi , β
bi
i , γ bii ) is a valid transcript for π . If the

prover does not open a commitment or any of the transcripts are not valid, verifiers

output (Blame, P ). Otherwise, verifiers output (Proof, x ).
• If F

COIN
or F

BC
outputs a blame message, all parties output this message and exit.

Fig. 4. πR , the hybrid-model protocol for an interactive one-to-many zero-knowledge proof
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Theorem 6.2. If π is a Σ-protocol for R, πR UC-realizes F R
ZK

in the static-corruption, synchronous,

(F 1:M

MCOM
, F

BC
, F

COIN
)-hybrid model if there is at least one honest CP.

Proof. We follow the approach in [37], but we must consider modifications required to construct

the proof in a a one-to-many setting, and we must account for blame messages required for

accountability. We follow the definition of Σ-protocol for π given by Damgård in [15] which

defines two algorithms: a simulator πs for π which accepts a uniformly random challenge value

(i.e. one provided by an honest verifier) and outputs a transcript-triple indistinguishable from a

real execution of π , and a witness extractor πe which accepts two transcripts for π with identical

first (commitment) values but distinct second (challenge) values, and outputs a valid witnessw for

π . We define the simulator S as follows. S runs a copy of A and runs every party honestly in the

simulated real-model for the benefit of the environment Z except where specified below:

Honest Prover.
• Simulating Round 1. S selects 2n challenge values,

®β0, ®β1 and flips n coins to generate a coin

vector
®b. S invokes the simulator πs with (x , βbii ) as statement and challenge. S recovers the

commitment, αi , and response, γ bii from each transcript produced by πs , generates n random

values γ¬bii and collects these into vectors ®α , ®β0, ®β1, ®γ 0
,
®γ 1
, and broadcasts and commits to

these values as appropriate in the protocol πR .
• Simulating Round 2. S sends (GenerateCoins) on behalf of the honest parties, and sends

(Participate) to F R
ZK

for dishonest verifiers who sent (GenerateCoins) to F
COIN

in this

round.

• Simulating Round 3. This round only takes place if every dishonest verifier has sent Gen-

erateCoins and S has subsequently sent (Participate) on their behalfs. S sends the vector

®b from Round 1 on behalf of F
COIN

as a response to the verifiers. The prover is simulated

honestly.

• Simulating Round 4. Honest verifiers are simulated honestly.

Dishonest Prover
• Simulating Round 1. S recovers the vectors ®α , ®β0, ®β1, ®γ 0

,
®γ 1
triples from the initial messages

and commitments sent by Z on behalf of P .
• Simulating Round 2. S sends (Participate) to F R

ZK
on behalf of the honest parties, and on

behalf of the dishonest parties that send (GenerateCoins) to F
COIN

.

• Simulating Round 3. S simulates F
COIN

honestly, and if F
COIN

sends a blame message instead

of a bit vector, the protocol execution terminates. Otherwise, S waits for P to open its

commitments. If P opens the n commitments and each of the n transcripts is valid, S checks

the remaining n unopened commitments. If any of these also forms a valid transcript, S runs

πe on one of these valid transcript pairs, recovering a witness w and sends (ZKP, x , w) to

F R
ZK
. If all of the remaining n unopened commitments are invalid, S halts and the simulation

fails. If P fails to open the n commitments as required or any opened commitment generates

an invalid transcript for π , S sends ⊥ to F R
ZK

on behalf of P .
• Simulating Round 4. Honest verifiers are simulated honestly.

We claim that the view of Z in the ideal model as it interacts with S and F R
ZK

is computationally

indistinguishable from the view of Z as it interacts with an adversary A in the execution of πR .
Honest Prover. We define a sequence of hybrid executions, beginning with the real execution of

πR (which we note is formally an execution in a hybrid model, but which we denote “real execution”

here to avoid ambiguity) which we label H0. In this case, P has a witness w , constructs n valid

transcript pairs, opens one set of commitments, and the honest verifiers accept the proof. We note

that any partial execution terminated by malicious verifiers is a prefix of a full execution of the
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protocol, with a blame component. In the case the protocol is aborted early, the set of CPs to blame

is identical in all cases: S simply sends participation messages on behalf of dishonest verifiers

exactly when these verifiers participate in F
COIN

. We define, for each i > 0, Hi to be a hybrid where

for each j ≤ i , the execution is modified as follows:

• P constructs transcripts and behaves in round 1 for each value with index j > i as in the real

execution H0. For α j , β
0

j , β
1

j , γ
0

j , γ
1

j with j ≤ i , P runs the protocol as S does, generating these

values using πs and withoutw .

• F
COIN

behaves honestly except for j ≤ i . For these values, F
COIN

learns the value bj from
P determined in the simulation of Round 1 and if all parties send (GenerateCoins), F

COIN

sends this mixed vector of n values.

Lemma 6.3. No PPT environment Z can distinguish between H0 and Hn with non-negligible proba-

bility.

Proof. It suffices to show that for 1 ≤ i ≤ n, there is no PPT environment Z that can distinguish

with non-negligible probability between Hi and Hi−1. Every message of the transcripts from any

execution of these two adjacent hybrids are identical except for αi , β
0

i , β
1

i , γ
0

i , γ
1

i , and bi . bi , β
1

i ,

and β0i are identically distributed in each hybrid, as they are generated according to the same

distribution (uniform in each case) by a party not controlled by Z . γ¬bii is never observed by Z in

any execution of any hybrid. Then if Z can with non-negligible probability distinguish between Hi ,

Hi−1, then Z can distinguish between the transcript (αi , β
bi
i , γ bii ) constructed by the simulator πs (in

Hi ) and a real execution of π (in Hi−1). Since π is computational zero knowledge, these transcripts

are computationally indistinguishable so no such Z can exist. □

Then it suffices to show that the difference between Hn and the ideal model I is a view change.

We begin with Hn and introduce the simulator S , noting that P and F
COIN

in Hn and S in I behave
identically by construction. In Hn , P does not use its witness w so all of its messages can be

constructed by the simulator, which also simulates F
COIN

, so that the coordination of the bits

sent by F
COIN

and the vector
®b generated by P happens inside the execution of S . Honest CPs

have no inputs and are simulated honestly so that their outputs always match the output of F R
ZK
.

Finally, blame is determined based on the output of F R
ZK
, but in the ideal functionality makes this

determination by simply determining whether the appropriate participation messages were sent by

CPs and if the statement and witness (x , w) from the prover are valid. We note that we assume

the protocol with an honest prover is run with valid input, meaning that an honest prover always

sends a valid witness to F R
ZK
.

Dishonest Prover
• In Round 1, 2, and 4 the simulator behaves exactly as instructed by Z . In round 3, the we

observe that the probability that the simulation fails is the probability that the uniformly

generated n coins all land in the prover’s favor, which is
1

2
n ∈ Negl(n).

□

6.4 Accountable Shuffles
We sketch an accountable construction of Wikström’s proof of a shuffle in the UC model, arguing

that the abov techniques can be applied to construct a multi-verifier shuffle proof.

The proof consists of a sequence of six messages. Two are commitments, two are simple values

that can be broadcast, one consists of a set of primes that may be generated by public coins, outlined

in detail in [70]. The final value that is missing is an RSA modulus which the prover cannot know.

In the one-to-one case the verifier may trivially generate this value, but for our application it must

ACM Trans. Priv. Sec., Vol. 25, No. 4, Article 25. Publication date: May 2022.



Accountable Private Set Cardinality for Distributed Measurement 25:19

be jointly generated by a group of verifiers, with no verifier knowing the factorization. We note

that accountable efficient distributed protocols [36] to construct a public RSA modulus have been

proved secure in the UC model since this proof of a shuffle was originally presented, and may

be used in our setting to generate the required parameters in a distributed verifier setting with a

dishonest majority and with an accountability property. Finally, we note that extraction of a witness

in the proof of the shuffle is done by extracting the witness directly from the ideal zero-knowledge

proof of knowledge of the cleartext functionality F
RC
ZK

. While this functionality is realized in the

original proof by a version of verifiable secret sharing, we note this can also be realized by our

accountable proof F
ZKP-DL

, which we have realized above.

6.5 Session Key Generation and Distribution
While we assume a fixed PKI that distributes and certifies signing keys for every party, a new session

key must be constructed for each invocation of the protocol, and it must be jointly constructed by

all CPs in an accountable way and then distributed to the DPs so that all DPs agree on the joint key.

We sketch how this may be done in the UC setting and outline a natural functionality to accomplish

this, F
SKGD

. This functionality may be realized by letting each CP broadcast its public keys and

F
SKGD

(1) Round 1. Upon receiving a message (GenerateKeys) from an honest party Pj , generate
a new ElGamal key: (x j ,д

x j ) and send (Pj , д
x j
) to A and all parties, and send x j to Pj .

Upon receiving private keys x j from a malicious party Pj , send (Pj , д
x j
) to all parties. At

the termination of Round 1, if any CP has not generated a key, collect those parties into

a set B and broadcast (Blame, B) to all CPs. If all CPs have generated keys, send the joint
public key y =

∏
j д

x j
to all DPs.

Fig. 5. F
SKGD

, an ideal functionality for ElGamal Key Generation and Distribution

accountably prove knowledge of the corresponding private keys (including the DPs) but this is

prohibitively inefficient even in theory with the expected thousands of DPs. Rather, we sketch a

more efficient method that mirrors our implementation but may be realized in the UC setting:

(1) CPs generate a private key x j .
(2) CPs broadcast the corresponding public key дx j to all other CPs using F

BC
.

(3) CPs prove knowledge of the discrete log x j accountably to each other only using F
ZKP-DL

.

(4) CPs each broadcast a signature of the joint public key y =
∏

j д
x j
, the product of the

public keys of all CPs with signature σj = Sign(Session-Key|sid|j |y) using a UC signature

functionality.

(5) CPs each send (y, ®σ ) to every DP via a point-to-point authenticated channel F
auth

.

(6) DPs wait to receive a public key signed by all CPs. If they receive zero or more than one

distinct signed key, the DP halts. Otherwise, they accept this single key and move forward

with the protocol.

(7) Blame is assigned by all CPs if a CP does not send a message in one of the above phases as

expected, or if they send an invalid message: the ZKP is not valid, the signature is not valid,

or the signature is on the wrong value.

In this construction, each CP sends each DP a single message. We sketch the security proof: all

CPs agree on the keys of each CP or one is blamed in the first phase. If one is blamed, the protocol
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terminates. If not, the honest CP sends a valid key pair and vector of signatures to each DP, ensuring

each DP has at least one valid message. Since one CP is honest, let it be CPh , the UC signature

functionality constructs at most one σh , so no DP receives more than one valid public key pair.

6.6 PSC Ideal Functionality
We give the ideal functionality for PSC in Figure 6.

F
PSC

(1) (Corruptions) Wait until (CORRUPT-CP,C) is received from A. For each j ∈ C , add
CPj to the list of corrupted parties.

(2) (Collection Period). Initialize, for every DPj , a bit vector ®v
j
of b zeros. Upon receiving

a message of the form (Observation, i) from some DPj , set v
j
i ← 1. Upon receiving

(CORRUPT-DP, j) from A during this period, add DPj to the list of corrupted parties.

Note that past inputs to DPj are not revealed to A upon corruption.

(3) (Round 1). Sample the noise value as N ∼ Bin(n, 1/2), where Bin(n,p) is the binomial

distribution with n trials and success probability p. Letwi = max

(
v1

i , . . . ,v
d
i
)
, 1 ≤ i ≤ b.

Compute output z ←
(∑b

i=1wi

)
+ N − n/2. Send z to A.

(4) (Round 2). Send z to all CPs.

(5) (Blame). If at any point, F
PSC

receives a message of the form (blame, B) from A where

B is a set of corrupted CPs, replay that message to every CP and terminate the protocol.

Fig. 6. F
PSC

, the Private Set-Union Cardinality ideal functionality

6.7 Simulator Definition
We define S , the ideal model adversary parametrized by a real-world adversary A, which interacts

with F
PSC

and an arbitrary environment machine Z . We assume a dummy adversary A that simply

relays messages to and from Z since this generalizes all adversaries [12]. The primary challenges

here are that S must extract inputs of the corrupted parties before the result is calculated by F
PSC

since these values are its inputs, and must fool Z into believing the honest parties are executing

the protocol faithfully on input given by Z . This means the behavior of honest parties with the

“dummy” inputs from S must be indistinguishable from honest parties executing the protocol with

the true input from Z , and also that the final output of F
PSC

is distributed as dictated by Z . Finally,
S must note observable malicious behavior that generates a blame message and forward these onto

F
PSC

accordingly. We define CPh as the last honest CP in the CP ordering.

6.8 Proof
Fix a security parameter k ∈ N and consider any PPT environment machine Z . Z interacts with a

given protocol π by submitting environmental inputs to honest parties and reading their outputs,

communicating with an adversary A, and corrupting parties at will according to our assumptions:

DPs any time during the collection period, and CPs statically at the beginning of the protocol. We

define the output of Z ∈ {0, 1} in the real execution of πPSC as REALπPSC,A,Z (k) and the output of Z
in the ideal execution as IDEALF

PSC
,S,Z (k), with the ideal functionality F

PSC
, simulator S , defined

above. For each k each of the above outputs is a random variable, taken over the random input

tapes provided to the parties and functionalities in each execution. If we fix the random input

to Z , and then observe that the output of Z is a function of the execution trace it observes, so if

ACM Trans. Priv. Sec., Vol. 25, No. 4, Article 25. Publication date: May 2022.



Accountable Private Set Cardinality for Distributed Measurement 25:21

The ideal model simulator S

(1) Key Generation. S simulates all parties honestly, extracting the private keys of each

malicious CP as they are sent to F
SKGD

.

(2) Data Collection. S simulates honest DPj by selecting a random value ri j for every
plaintext counter i , and encrypting zero as its blind. S provides these plaintext counters

for Z if DPj is corrupted adaptively. For malicious DPj , S extracts the plaintext of each

blind for each bin i using the keys extracted from F
SKGD

, saving these plaintexts as ri j .
(3) Noise Generation. During the Noise Generation phase, when CPh submits its shuffle,

S instead constructs two fresh encryptions of zero and submits these on behalf of CPh . S
simulates F

ZKP-S
to tell all CPs that this “shuffle” is valid.

(4) Input Submission. S sends −ri j for every counter on behalf of every honest DPj ,

submitting zero for every counter. S collects the counters from every DPj as ci j . For each
bin i , S checks if

∑
j ri j + ci j is the identity. If not, S submits (Observation, i) to F

PSC
on

behalf of DPj .

(5) Shuffling. S simulates honest CPs honestly except for CPh , replacing its submission

during this phase with a vector of fresh encryptions of 0.

(6) Rerandomization-Decryption. S simulates all honest CPs honestly except for CPh .
CPh is simulated as follows: Once S receives z from F

PSC
, S encrypts a vector containing

z+n/2 random non-identity group elements and (n+b)−z−n/2 encryptions of 0, where
encryption is done for the remaining CPs: for a value k , S encrypts E(h+1),(h+2)...,m(k ; r )
using the convention that ifm = h, no encryption is done and this is a plaintext element

дk . S then shuffles this vector of encrypted values (or plaintexts, in the case that h =m),

and submits it on behalf of CPh , simulating F
ZKP-RRD

so that it attests to the validity of

this vector as a correct rerandomization-decryption of the previous vector.

(7) Conclusion and Blame. If any of the accountable functionalities produce a blame

message for a set of CPs B, or if some set B of malicious parties do not send a valid

message in some round, S sends a message (blame, B) to F
PSC

where B is the set of

blamed CPs.

Fig. 7. The ideal model simulator S

the messages sent by other parties in two distinct protocol runs with the same Z are identically

distributed, the output of Z in each case is identically distributed as well.

We define the following sequence of (sequences of) hybrid executions which are protocols that

interact with Z defined by incremental modifications from REALπPSC,A,Z (k, z), where each time

the behavior of honest parties is adjusted, using information collected by the hybrid itself from its

interaction with Z . These hybrids “simulate” the execution for the benefit of Z as the simulator does,

but generally can recover inputs that S does not have access to like the direct inputs from Z to the

honest parties, the goal being that the behavior of the last hybrid in this sequence is the behavior

of S . Each incremental transition is a transition between two executions that are identical (meaning

the distribution of messages sent by honest parties is constructed identically before and after the

change in hybrid executions) or are computationally indistinguishable assuming the Decisional

Diffie-Helman assumption for our group G. We denote a hybrid execution with a single letter (e.g.

H ) with the fixed k , Z implicit.
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Since the ideal-model simulator S does not know the inputs of honest parties, we transition from

REALπPSC,A,Z (k, z) by replacing the messages sent by honest parties with “dummy” values, which

will be produced by S in the ideal model. We reduce the environment Z ’s ability to distinguish

between two hybrid executions to winning the IND-CPA game for ElGamal, but in order to do this

the hybrid must correctly “decrypt” a value encrypted to the public key of the IND-CPA challenger,

which means we must recover these submitted secrets by other means to faithfully reproduce and

swap-in the final result expected by Z based on the inputs it has submitted.

The hybrid executions record and reproduce these final results in order to provide messages sent

by honest parties that replace decryption of ciphertexts for which they do not have the keys. We

formalize this process in a “Ghost Execution”.

6.8.1 The Ghost Execution and “Fixing” the Simulation. In the last phase of the protocol, Rerandomization-

Decryption, we observe that the last honest CPh produces a vector of ciphertexts (or plaintexts, if

m = h) as its output, but if we fix the plaintexts in the vector, then the output of CPh is a vector

where each component is a uniformly random fresh encryption of its corresponding plaintext

multiplied by a uniformly random nonzero Rerandomization factor. This is because CPh re-encrypts

the ciphertext alongside the rerandomization-decryption. This means if the plaintexts are known

to CPh in this phase, the output it constructs by honestly decrypting the vector it received to

Rerandomize-Decrypt is identical in distribution to the output it constructs by constructing a fresh

encryption of the decryption of that plaintext times a uniformly random nonzero value. We call

this replacement process in the final phase “fixing the execution”.

Any hybrid execution can extract parameters used for each operation in every phase by all parties,

and use them to reconstruct the plaintext in the last phase as required, since each component that

goes into the calculation of these plaintexts is constructed by an honest party (and therefore run by

the hybrid directly) or for malicious parties, extracted as follows:

(1) Blinds from malicious parties are extracted from F
ZKP-DL

.

(2) Malicious parties’ shuffles in noise generation and shuffling are extracted from F
ZKP-S

.

(3) The Rerandomization-Decryption factors are extracted from F
ZKP-RRD

.

Hybrid executions keep track of these values, extracting the values above selected by Z , and
recording the values selected by honest parties. The values are stored in a parallel execution called

the ghost execution, and in the last phase of the protocol, Rerandomization-Decryption, CPh uses

these plaintexts constructed through direct extraction rather than its input. F
ZKP-RRD

indicates to

all other CPs that these values are a correct Rerandomization-Decryption as expected, and in this

way we “fix the execution”.

6.8.2 Blind Submission. We set B10 = REALπPSC,A,Z (k). We define a sequence of db executions:

Bseq = ⟨B10,B11,B12, . . . ,B1d , . . . ,B2d , . . . ,Bbd ⟩

where each Bi j with i ∈ 1..b, j ∈ 1..d . Define Bi j by:

• Run B10 honestly, except that for counter t and dp D, during blind submission, if D is honest

and either t < i or t = i and D ≤ j, submit a fresh encryption of zero on behalf of D for its

blind in bin t . Record a random blind b in the Ghost Execution for each of these honest DPs,

and save as their corresponding plaintext counter −b.
• CPh fixes the simulation as described in 6.8.1, submitting values from the Ghost Execution as

its message during the Rerandomization-Decryption phase.

Lemma 6.4. Every adjacent pair of hybrid executions in Bseq is computationally indistinguishable.
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Proof. Suppose we have two adjacent hybrid executions Bl , Br . We note that by construction,

in each adjacent pair of hybrid executions the behavior of honest parties differs by exactly one

ciphertext submitted by one DP. Assume there exists a PPT environment Z that can distinguish

between these executions. We define an algorithm A that runs Z and claim that the advantage of Z
distinguishing Bl and Br is the same as the advantage of A in the IND-CPA game for ElGamal. A
plays the IND-CPA game for ElGamal:

(1) A accepts a public key yc from the challenger in the IND-CPA game. A runs an execution of

Bl and replaces yh with yc in the protocol. Each time a functionality (more precisely, ZKPs

in the Rerandomization-Decryption phase and F
SKGD

) requires CPh prove knowledge of the

secret key, the ZKP functionality accepts the “proof” provided by CPh .

(2) For the blind in bin t submitted by DP D, A calculates a random blind b value as an honest

DP would and sends the pair of plaintexts (b, 0) to the challenger in the IND-CPA game and

receives a ciphertext C .
(3) A sends C as the ciphertext blind for bin t on behalf of DP D, further encrypting C to the

public keys of all other CPs.

(4) A sets −b as the plaintext counter for bin t and simulates the DP exactly as in Br .
(5) Instead of decrypting, A replaces each output of CPh during Rerandomization-Decryption as

described in 6.8.1 and gives to the IND-CPA challenger the output of Z .

If the challenger encrypts b, the blind for t is random and the plaintext is its opposite and this is an

execution of Bl . If the challenger encrypts 0, the “fixed” value output by CPh is the same as before,

but this is an execution of Br .
Therefore A has the same nonzero advantage in the IND-CPA game for ElGamal that Z does

distinguishing between Bl , Br which is non-negligible, violating the DDH assumption.

□

6.8.3 Data Collection. We set D10 = Bbd . We define a sequence of db hybrid executions:

Dseq = D10,D11,D12, . . . ,D1d , . . . ,D2d , . . . ,Dbd

where each Di j with i ∈ 1..b, j ∈ 1..d . Define Di j by:

• Run D10 honestly, except that when a currently-honest DP D is instructed to record an

observation for counter t , if t < i or t = i and D ≤ j, ignore it. Add a random value rt to the

sum for counter t in the ghost execution.

• CPh fixes the simulation as described in 6.8.1.

Lemma 6.5. Every adjacent pair of hybrid executions in Dseq is identically distributed.

Proof. Suppose we have two adjacent hybrid executions Dl , Dr . We note that by construction

each adjacent pair of hybrid executions differs by at most one counter t submitted by one honest

DPj . If no instruction of the form (Observation, t ) is sent to DPj while DPj is honest, the two

executions do not differ at all. So assume such a message is received. Before this occurs, DPj stores

a value −b for counter t , and the ghost execution has recorded b as the corresponding blind. Then,

in Dl , when DPj is sent an Observation message, DPj replaces −b with a fresh random value b ′.
In Dr , DPj sets −b, but the blind for DPj for counter t is replaced with a fresh random value rt in
ghost execution. We observe now that DPj may be adaptively corrupted at this point, or it may

not. Either way, crucially the plaintext counter stored for DPj for counter t is revealed to Z after

the observation has taken place, and the changes described above have been made. We describe

the differences between these executions, which consist of the value of the plaintext counter for t
held by DPj and the sum of the inputs for counter t by DPj in the ghost execution after the Input

Submission phase.
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• In Dl , DPj ’s plaintext counter is b
′
, a uniformly random value unrelated to any other value.

The sum in the ghost execution for the submissions on behalf of DPj is b and a value selected

by Z with no knowledge of b.
• In Dr , DPj ’s plaintext counter is −b, where b is selected uniformly at random. The sum in

the ghost execution for the submissions on behalf of DPj is b + rt and an element selected by

Z with knowledge of −b.

The plaintext counters b ′ and −b are both uniformly random values (b ′ is chosen this way, −b is

random since b is). The sums in the ghost execution are uniformly random as well, since they both

contain a summand which is uniformly random (b in Dl and rt in Dr ), and about which Z never

learns any information. □

6.8.4 Noise Generation. We set Dbd = N0 and define a sequence of hybrid executions beginning

with the final execution in the previous step:

NSEQ = ⟨N0,N1, . . . ,Nn⟩

• Nj = Nj−1 except that during the Noise Generation phase, for rounds i ≤ j, when CPh

calculates ®N ih
, it instead replaces this vector with a vector of two fresh distinct encryptions

of zero and F
ZKP-S

indicates to all other CPs that these ciphertexts are a shuffle of the previous

ciphertexts.

• CPh fixes the simulation as described in 6.8.1.

Lemma 6.6. Every adjacent pair of hybrid executions Nj , Nj+1 is computationally indistinguishable.

Proof. Suppose an environment Z can distinguish between the two adjacent executions. We

construct an IND-CPA adversary A that has non-negligible advantage in the IND-CPA game for

ElGamal. We play the IND-CPA game for ElGamal:

(1) A accepts a public key yc from the challenger in the IND-CPA game. A runs Nj with yc as
the public key for CPh until the Noise Generation phase. Proof functionalities that require

knowledge of the secret key for yc accept CPh ’s proofs as correct.
(2) A sends the plaintexts (0, 1) to the challenger and receives a ciphertext C .
(3) During Noise Generation, CPh performs the shuffle as before but replaces the ciphertext that

is an encryption of 1 with C , encrypted with the keys of the remaining CPs.

(4) A fixes these ciphertexts during Rerandomization-Decryption as described in Section 6.8.1.

(5) A submits the output of Z to the challenger in the IND-CPA game.

Then we observe that if the challenger encrypts 1, we have a fresh encryption of 1 and our new

re-encryption of 0 in a random order, which is a valid shuffle of the previous ciphertexts and we

are in execution Nj . If the challenger encrypts 0, we submit two fresh encryptions of 0 on behalf of

CPh and this is Nj+1. Then our advantage in the IND-CPA game is the same as the advantage of Z
distinguishing between Nj , Nj+1 which is negligible. □

6.8.5 Shuffling. We define a sequence of hybrid executions beginning with the previous transition:

Nn = S0, S1, . . . Sn+b

• S j = S j−1 except that during the Shuffling phase, when CPh calculates
®dh , for components

i ≤ j, CPh broadcasts an encryption of zero and F
ZKP-S

indicates to all other CPs that these

ciphertexts are a shuffle of the previous ciphertexts.

• CPh fixes the simulation as described in 6.8.1.

Lemma 6.7. Every adjacent pair of hybrid executions S j , S j+1 is computationally indistinguishable.
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Proof. Suppose an environment Z can distinguish between the two adjacent executions. We

construct an IND-CPA adversary A that has non-negligible advantage in the IND-CPA game for

ElGamal. We play the IND-CPA game for ElGamal:

(1) A accepts a public key yc from the challenger in the IND-CPA game. A runs S j with Z with

yc as the public key for CPh until the Shuffling phase. ZKP functionalities that require the

secret key for CPh instead simply accept all proofs from CPh without it.

(2) A performs the shuffle and recovers the plaintext t for component j +1.A sends the plaintexts

(0, t ) to the challenger and receives a ciphertext C .
(3) A during Shuffling, on behalf of CPh , performs the shuffle as before but replaces the ciphertext

for component j + 1 with C , further encrypted with the keys of the remaining CPs.

(4) A fixes the output during Rerandomization-Decryption as described in Section 6.8.1.

(5) A submits the output of Z to the challenger in the IND-CPA game.

Then we observe that if the challenger encrypts t this is exactly S j , while if the challenger en-
crypts 0 this is S j+1. Then our advantage in the IND-CPA game is the same as the advantage of Z
distinguishing between S j , S j+1 which is negligible. □

6.8.6 Introduction of the Ideal Functionality. In Sn+b , during the Rerandomization-Decryption

phase CPh outputs a vector of encryptions of the values recorded in the Ghost Execution. This

vector is completely characterized by three values: a number of nonzero elements o ∈ N, a vector
of plaintexts ®o of length o, and an permutation π on b + n elements that selects an ordering of the o
nonzero plaintexts and the remaining zeros. Any specific execution of any hybrid selects a precise

value for each of these variables. We define the final hybrid F :

• Execute identically to Sn+b except instead of “fixing” the final vector of outputs during

Rerandomization-Decryption on behalf of CPh , extract only the number of nonzero counters

from the Ghost Execution and save this value o.
• Construct a vector as follows: take o nonzero elements uniformly at random, append zero

n +b −o times, apply a uniformly random shuffle to the vector then encrypt each component

to the (possibly empty) joint public key

∏m
j=h+1 yj . Send this as the output for CPh .

Lemma 6.8. F and Sn+b are identically distributed.

Proof. The executions are identical to the pointwhere CPh sends its output in the Rerandomization-

Decryption phase by construction. Therefore, it suffices to show that the distribution of the output,

characterized as o, ®o, π of CPh in the two executions F , Sn+b is identical.

We observe that o is determined identically in both executions since it is selected before the

processes formally diverge. In the execution F , ®o and π are drawn uniformly at random among

nonzero elements of Zp (we refer to elements by their discrete log with respect to the generator д),
and uniformly among permutations, respectively. We show this is the case in Sn+b as well.

Consider a given element of ®o. In Sn+b it is constructed by application of a sequence of h
multiplications of nonzero elements µ1...µh to the original input, whether that input is generated

at random by an honest party, constructed by noise, or submitted by malicious parties. Call the

input α . Then the output of CPh for this component is β = αµ1 . . . µh and we observe that µh is

selected by the honest CPh uniformly at random when the value is produced, and that each µ is

nonzero since CPs cannot submit zero rerandomization factors, and α is nonzero by the definition

of ®o. Therefore αµ1 . . . µh−1 is nonzero hence invertible in a group of prime order, so a uniformly

random selection of µh gives a uniformly random distribution among nonzero elements for β .
Second, consider π : π is determined by application of the m permutations π = πh ◦ · · · ◦ π1

where each πi is the permutation selected by CPi during the Shuffling phase and we observe

that since every permutation is invertible, selection of πh uniquely determines π . πh is chosen
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during shuffling but no information about the choice is revealed until CPh submits its values during

Rerandomization-Decryption, so CPh may without altering the execution at all make this choice

when its final output is constructed, selecting πh at random and ensuring π is as well.

□

Proposition 6.9. F and the ideal model execution IDEALFPSC,S,Z (k) are statistically indistinguish-

able.

Proof. After the sequence of transitions above, the honest parties in F behave identically to

how they are simulated by S in Figure 7 except for the calculation of the value o, which is recovered

directly from F
PSC

in IDEALFPSC,S,Z (k), and extracted from the aggregate in the ghost execution

during Rerandomization-Decryption in F . We need to show that the value o in both executions

is the same. We split the value o (from either execution) into two nonnegative summands since

components of the final vector consist of two disjoint sets: data counters, determined by aggregating

inputs, and noise counters, determined by shuffling ciphertexts in the Noise Generation phase.

Nonzero Counters from Data.
Fix a data counter t . We show that t contributes to the count o (i.e., is nonzero) in F if and only

if it contributes in IDEALFPSC,S,Z (k). Throughout this section, we consider “plaintexts” to be the

discrete log of these encrypted values with respect to д, and call a plaintext 0 if it is д0 i.e. the group
identity element.

For data counter t , we write σ F
t as the sum of 3j values in the execution of F : each DPj submits

a blind during the beginning of the Data Collection phase. Following notation in the simulator

definition, call the plaintext of this blind rt j . Each DPj also submits a plaintext counter ct j . Finally,
the Ghost Execution has recorded some number of random increments for each honest-at-the-time

DPj that receives Observation from Z , call this sum st j . Then the plaintext that is used by CPh in

F for counter t is zero if and only if σ F
t =

∑
j (rt j + ct j + st j ). Further, since the processes do not

formally diverge until after σt is determined, the equivalent value that is used in IDEALFPSC,S,Z (k)

by S to determine whether to send an observation message to F
PSC

is: σ I
t =

∑
j (rt j + ct j ) since S

has no Ghost Execution. We first observe that if a DPj is honest through the input submission

phase, rt j + ct j = 0 since honest DPs submit 0. We note that if either of these sums is nonzero, it

guarantees that counter t will be nonzero in the final tally in that execution (in IDEALFPSC,S,Z (k),
the observation is sent directly to F

PSC
by S . In F , the value is inserted in the output of CPh during

Rerandomization-Decryption directly).

(1) σ I
t = σ F

t = 0. This means no c jt has been incremented, meaning that no honest DP has been

sent an Observation message, and the value of t is the same in both executions, or some

nonzero number of uniformly randomly selected values sum to zero, which is an event with

negligible probability
1

|G | .

(2) σ I
t , 0, σ F

t , 0. In this case, t is forced to count in the tallies of both executions, as the

observation is directly sent to F
PSC

in IDEALFPSC,S,Z (k), and remains nonzero in F since it is

multiplied by a sequence of nonzero values.

(3) σ I
t , σ F

t , with one of these equal to zero. This means

∑
j st j , 0. If σ F

t = 0, this means

randomly selected nonzero

∑
j st j is exactly −σ

I
t , a sum calculated with no knowledge of∑

j st j , which occurs with negligible probability
1

|G | . If σ
I
t = 0, then a then-honest DP has

received some Observation message, so in F t is included in the tally since σ F
t , 0, and in

IDEALFPSC,S,Z (k) t is included in the tally because (Observation, t ) has been sent to some

honest DP who has forwarded it directly to F
PSC

.

Nonzero Counters from Noise. The second portion of o comes from the noise counters. In

IDEALFPSC,S,Z (k), this is a number drawn by an ideal functionality directly from Bin(n; 1
2
). In F , it is
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determined by the composition of permutations in each round i of the Noise Generation phase, but

the ciphertexts being shuffled in F after CPh applies its shuffle for each bin of Noise Generation are

both encryptions of zero, so all plaintexts for these ciphertexts are encryptions of 0 and carry no

information about the honest permutation π ih
. This means π ih

for each noise generation round i in
F is selected external to the execution during Noise Generation, and no messages in the execution

depend on π ih
until Rerandomization-Decryption, so the π ih

may be chosen then. For each round

one of the two permutations on two elements provides a result of 1 and the other of 0. We draw all

n of them from these randomly, producing exactly the same distribution Bin(n; 1
2
).

Then we conclude the number o is selected from the same distribution in both executions except

with negligible probability, as the sum of a fixed number of nonzero data counters (a number which

may differ in both executions but only with negligible probability) and a number which is drawn

identically from the same distribution by honest parties in each case. □

Theorem 6.10. The protocol πPSC πPSC UC-realizes F
PSC

in the (F
BC
, F

SKGD
, F

ZKP-S
, F

ZKP-RRD
,

F
ZKP-DL

)-hybrid model if there is at least one honest CP and all CP corruptions are static and the

Decisional Diffie Hellman assumption holds for the group G.

Proof. We have the sequence of computationally indistinguishable hybrid executions, beginning

with REALπPSC,A,Z (k) and followed by the sequences BSEQ, DSEQ, NSEQ, SSEQ, with the last element

of this last sequence indistinguihable from IDEALFPSC,S,Z (k). Since the number of transitions is

finite, and the distinguishing advantage for any PPT environment between any adjacent two is

bounded by a negligible function, we arrive at the statement of the theorem.

□

7 IMPLEMENTATION AND EVALUATION
We constructed an implementation of PSC in Go to verify our protocol’s correctness and to measure

the system’s computation and communication overheads. We run experiments over large synthetic

datasets and measure our implementation’s performance. We describe the implementation details

and design choices in Section 7.1 and then present our performance evaluation in Section 7.2.

7.1 Implementation
We built an implementation of PSC in Go using the Kyber [45] advanced cryptographic library.

ElGamal encryption is implemented in the Edwards 25519 elliptic curve group [64] and the CPs

use Neff’s verifiable shuffle [54] to shuffle the ElGamal ciphertexts.

The CPs perform secure broadcast using the optimized “heartbeat” version of the Dolev-Strong

protocol described in Section 6.1.1. We do not implement time-outs that explicitly signal the end of

a Dolev-Strong round. Therefore, termination is not guaranteed in our implementation i.e. honest

CPs may wait forever on malicious CPs that do not send their response. However, this does not

affect our results as we analyze the performance of our protocol in an honest setting i.e., all CPs

and DPs are considered honest (refer Section 7.2).

The CPs use the Schnorr signature algorithm [60] over the Edwards 25519 elliptic curve for signing

and SHA-256 for computing digests. We use TLS 1.2 for secure point-to-point communication.

We use “Biffle” in the Kyber library for shuffling the noise vectors during the noise generation

phase. Biffle is a fast binary shuffle for two ciphertexts based on generic zero-knowledge proofs.

For zero-knowledge proofs, we use Schnorr-type proofs [10, 60] for the combined re-encryption,

re-randomization and decryption of ElGamal ciphertexts and knowledge of discrete log of the

Elgamal public key and blinding factors. Non-interactive versions of all these proofs are produced

using the Fiat-Shamir heuristic [28].
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Table 1. Default values and descriptions for sys-

tem parameters.

Param. Description Default

b # of counters 300,000

m # of Computation Parties 5

d number of Data Parties 30

ϵ privacy parameter 0.3

δ privacy parameter 10
−12

Table 2. Actual, noisy aggregates, and standard deviation

for various values of ϵ .

ϵ Actual Agg. Noisy Agg. Standard Dev.

0.15 8927 8752 141.92

0.30 8927 8811 70.96

0.45 8927 8887 47.31

0.60 8927 8873 35.48

0.75 8927 8917 28.39

A single DP program emulates all the DPs in our implementation i.e., each operation (e.g., blind

submission, data collection, etc.) for every DP is performed sequentially by a single DP program.

However, in a real deployment, the DPs would be distributed.

To encourage the use of PSC by privacy researchers and practitioners, we are releasing PSC as

free, open-source software, available for download at https://github.com/GUSecLab/psc.

Optimization. While computing the aggregate, as an optimization the CPs first perform a secure

broadcast of the aggregate received from the DPs. If a consensus can be reached among the CPs,

then the agreed-upon aggregate is used. Otherwise, in the case where the CPs cannot reach a

consensus (on the aggregate), they opt for the more communication-intense process of performing

a secure broadcast (using the heartbeat Dolev-Strong protocol) for each individual DP blind and

plaintext responses.

7.2 Evaluation
Experiments are carried out on 10 core Intel Xeon machines with 32GB to 64GB of RAM running

Linux kernel 4.4.0. Our implementation of PSC is currently single-threaded. Although the computa-

tional cost of PSC’s noise generation is significant and may be done by the CPs before the inputs

are received, we parallelize it so that it can be done on multi-core machines after the inputs are

received. We use “parallel for” from the Golang par package [18] for this parallel noise shuffling.

We instantiate all CPs and DPs on our 10 core servers. Google Protocol Buffers [67] is used for

serializing messages, which are communicated over TLS connections between PSC’s parties. We

use Go’s default crypto/tls package to implement TLS.

Query and dataset. We evaluate PSC by considering the query: what is the number of unique IP

connections as observed by the nodes in an anonymity network? Although our implementation

tolerates malicious CPs and dishonest majority of DPs, we analyze the performance of our protocol

in an honest setting (i.e., all CPs and DPs are considered honest) for experimental purposes.

Rather than store 2
32
(or, for IPv6, 2

128
) counters, we assume b counters (where b ≪ 2

32
) and map

IP addresses to a (lgb)-bit digest by considering the first lgb bits of a hash function; this results

in some loss of accuracy due to collisions. For each experiment, we chose an integer uniformly at

random from the range [0, 30000]. Then for each DP, we choose from its counters a random subset

of that size to set to 1; the remaining counters are set to 0.
We note that the performance of PSC is independent of the number of unique IPs. Therefore,

in our performance evaluation, we are interested in how the number of counters b affects the

operation of PSC, rather than the number of unique IPs.

Experimental setup. The default values for the number of bins b, the number of CPsm, the number

of DPs d , ϵ , and δ are listed in Table 1.

We determine these default values by considering which values would be appropriate for an

anonymity network such as Tor. The Tor Project reports approximately 2.8million user connections

ACM Trans. Priv. Sec., Vol. 25, No. 4, Article 25. Publication date: May 2022.

https://github.com/GUSecLab/psc


Accountable Private Set Cardinality for Distributed Measurement 25:29

(using simple statistical techniques to roughly estimate the number of Tor users) and over 3, 000
guard nodes [65]. Assuming that 1% of Tor guards deploy PSC, we have d = 30. Also, given this

level of PSC deployment, we would expect a Tor guard to see approximately 30, 000 unique IPs (i.e.,
1% of ∼3 million user connections).

To measure the aggregate with high accuracy, we limit hash-table collisions to at most a fraction

f of inputs in expectation by using a hash table of size 1/f times the number of inputs. Therefore,

for f = 10%, we set (unless otherwise specified) b = 300, 000 in all our experiments. We set ϵ = 0.3
as this is currently recommended for safe measurements in anonymity networks such as Tor [40].

To limit to 10
−6

the chance of a privacy “failure” affecting any of 10
6
users, we set δ to 10

−12
[24].

We set these default values as system-wide parameters, unless otherwise indicated.

Accuracy. The trade-off between accuracy and privacy is governed by the choice of ϵ and δ . We

vary ϵ from 0.15 to 0.75, keeping the number of bins at b = 300, 000. We found that values below

0.15 produced too much noise and offered low utility. Values of ϵ greater than 0.75 would not

provide a reasonable level of privacy.

The actual and the noisy aggregate values along with the standard deviation for the noisy

aggregates (the noise follows a binomial distribution) for different values of ϵ is shown in Table 2.

We observe that the standard deviation of the noisy value is at most 141.92 even for smaller values

of ϵ , such as 0.15. Therefore, as expected the noisy aggregates are very close to the actual aggregates.
In summary, PSC gives highly accurate results for all tested privacy levels.

Communication cost. To be practical, a statistics gathering system should impose a low com-

munication overhead for the DPs, which can have limited bandwidth. However, we envision the

CPs to be well-resourced dedicated servers that can sustain at least moderate communication costs.

PSC incurs communication overhead by transmitting ElGamal encrypted blinds, a zero-knowledge

proof (for the knowledge of discrete log of the blinds), and masked plaintext counters between the

DPs and CPs and the ElGamal encrypted counters among the CPs.

We explore PSC’s communication costs by varying the number of bins b, the number of CPsm,

the number of DPs d , ϵ , and δ . The average communication cost for the CPs and DPs are plotted in

Figure 8 and Figure 9. We omit the error bars as PSC has a deterministic communication cost—there

is no variance in the communication cost incurred among the CPs (and similarly, among the DPs).

We first consider how the number of bins influences the communication cost. We run PSC,

varying b from 100, 000 to 500, 000, and plot the results in Figure 8 (left). The values of the bins (i.e.,

0 or 1) do not affect the outbound communication cost of the DPs, as the DPs invariably transmit an

encrypted blind, a zero-knowledge proof and a plaintext value for either 0 or 1. For up to 300, 000
bins, the outbound communication cost for each DP is fairly modest. For example, if PSC is run

once an hour, then the outbound communication cost is approximately 252MB/hr (70 KBps). We

also find that the inbound communication cost for each DP is constant (∼1.8 KB), as the DPs only
receive the signed ElGamal joint public key from every CP, irrespective of the number of bins.

The communication costs are more significant for the CPs, which we envision are dedicated

machines for PSC. With 300, 000 bins, each CP requires a bandwidth of 962.6 MB for sending and

2.5 GB for receiving (less than 700 KBps if executed once per hour). We observe that the difference

between the CP outbound and inbound communication cost is large and roughly equal to the sum

of the DP outbound communication cost per CP (i.e., 252/5 ≈ 50.4MB) across all 30 DPs. This is

because each CP sends the signed ElGamal joint public key (i.e., a single group element) to every

DP, whereas each CP receives b ElGamal encrypted blinds, zero-knowledge proofs, and plaintext

counters from every DP.
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Fig. 9. The communication cost incurred by the CPs varying ϵ (left) and δ (right).

We next consider howm, the number of CPs, affects the communication cost. We varym from

3 to 7 and plot the results in Figure 8 (center). The outbound communication cost for the DPs

increases at a much slower pace when varyingm (as opposed to b), as the DPs invariably send b
(= 300, 000) ElGamal encrypted blinds, zero-knowledge proofs and plaintext counters to each CP.

Therefore, even up to seven CPs, the outbound communication cost for each DP is fairly modest —

approximately 1.4 GB (or 98 KBps, if run every hour). We note that the inbound communication

cost per DP increases by a constant factor (∼0.93 KB) as the number of CPs increases. This increase

is due to each DP receiving a copy of the signed ElGamal joint public key from every CP.

The inbound and outbound communication costs for each CP increase almost linearly with the

number of CPs. Recall from Section 6.1.1 that each CP participates inO(m) broadcasts,O(m2) echoes,

and O(m3) heartbeats in the optimized heartbeat version of the Dolev-Strong protocol. Although

the total communication cost of the CPs is O(m3) (i.e. cubic in m), the communication cost for

the echoes (32 bytes) and heartbeats (∼100 bytes) is significantly less than that for the broadcasts

(which involve transmitting zero-knowledge proofs and ElGamal ciphertexts for all counters and

noise). Therefore, the communication cost per CP roughly increases by a constant factor (∼240MB)

as we increasem.

We rerun PSC with different numbers of DPs. Figure 8 (right) shows that varying the number

of DPs has no effect on the average communication cost for the DPs and the average outbound

communication cost for the CPs. This is because the DPs invariably send b ElGamal encrypted

blinds, zero-knowledge proofs and plaintext counters to each CP and receive a copy of the signed

joint public key from each CP. Likewise, the number of ElGamal ciphertexts and proofs transmitted

by the CPs also remains the same across these experiments. However, there is a large linear increase
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Fig. 10. The overall execution time as a function of the number of bins (left) and the number of CPs (right).
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Fig. 11. The overall execution time (right) and the communication cost (left) incurred by the CPs for different

operations, varying the number of bins.

in the inbound communication cost of the CPs as each CP receives b blinds, zero-knowledge proofs

and plaintext counters from each DP. The variation in the inbound communication cost per CP is

approximately 1.5 GB.
Next, we run PSC with different values of ϵ to determine how the choice of privacy parameter

affects the communication costs. Figure 9 (left) shows that the average communication costs for the

CPs decrease when ϵ is increased. The communication costs for the CPs are reasonable even for a

low value of ϵ = 0.15. On average, each CP requires a bandwidth of at most 1.3 GB for sending and

2.8 GB for receiving (less than 800 KBps, if performed once an hour).

Lastly, we consider how the choice of δ affects the communication cost. Figure 9 (right) shows

that the average communication costs for the CPs decrease as δ increases. The communication

costs for the CPs are reasonable even for a low value of δ = 10
−21

. On average, each CP requires at

most 1 GB for sending and 2.5 GB for receiving (less than 700 KBps, if performed once an hour).

In summary, we find that PSC incurs reasonable communication overhead: the costs to DPs are

moderate, and, while slightly higher for CPs, they remain practical.

Overall runtime. We explore the overall running time (including the time required for network

communication) of PSC by varying the number of bins b and the number of CPsm. The average

overall running as a function of b andm is plotted in Figure 10.

We first consider how the number of bins b affects the computation cost (note that more data

must be communicated using the optimized heartbeat DS protocol as b increases). The overall

runtime is moderate. It takes approximately 9 hr 6 min even for an experiment with 500, 000 bins.
We next consider how the number of CPsm affects the computation cost. The computation cost

increases with the CPs at a slower pace than with the bins. Even up to seven CPs, the average

computation cost for each CP is fairly modest — approximately 7 hr 27 min.

Microbenchmarks. To better understand the computational and communication overhead of

PSC, we measure the execution time (including the network latency) and communication cost for
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different operations (using the default values for all system parameters). The results are plotted in

Figure 11. We observe that the time taken for re-randomization decryption, blind submission, and

verifiable shuffles account for 19.8%, 27.8%, and 31% of the total runtime of the protocol respectively.

We note that the time taken for blind submission is the total time taken across all d (= 30) DPs

(recall that our implementation is currently single-threaded with a single DP program emulating all

the DPs). Therefore, as expected the verifiable shuffle followed by the re-randomization decryption

are the most time-consuming operations.

We find that the communication cost for re-randomization decryption, plaintext submission,

verifiable shuffles, and blind submission account for 10.3%, 12.4%, 23.4%, and 48.7% of the overall

communication cost of the protocol. Here again, the communication cost for the blind and plaintext

submission is the total cost across all d (= 30) DPs. Therefore, as expected, the verifiable shuffle

and the re-randomization decryption are the most communication-intense operations.

8 PRIVATE SET-INTERSECTION CARDINALITY
We outline how our protocol can be modified to calculate a private set-intersection rather than

a private set-union. To turn the homomorphic operation on ciphertexts from performing “or” to

performing ”and”, we invert the logical bit representation by encoding a logical 0 with any nonzero

value and encoding a logical 1with a zero. However, under this change of representation it would not

be possible to record an observation obliviously (i.e. flip a logical 0 to a 1) without further protocol

changes, since to record an observation each DP would need to know the original blind it submitted

in order to provide that blind’s negation. A DP cannot store in plaintext both the blind and the

current counter value, or it would reveal its counter value to the adversary upon adaptive corruption.

We can solve this problem by encrypting the counter value, but simply submitting the encrypted

counter would enable a related-ciphertext attack. Moreover, the same type of proof arguments

would not work as the simulator would not be able to extract the adversary’s counter values during

input submission. We solve these problems by adding a non-interactive Zero Knowledge Proof

of Knowledge for each encrypted counter, which enables extraction during the simulation proof.

We note, however, that while such ZKPs exist in the UC model, their constructions either require

stronger setup assumptions than a CRS [48] or are not structured similarly to the many-verifier

interactive Σ-protocols we use for the protocol for set-union [35]. We give some details of this

construction and then discuss resulting changes in the protocol’s security and efficiency.

Construction. To perform set-intersection cardinality, we modify the protocol (Sec. 5) as follows:

(1) Blinds are submitted as before: for a counter t , DPj submits E(bt j ) and the corresponding

proof of knowledge of the plaintext. DPs save two values: (1) −bt j as a “zero” value; and
(2) the pair (Ey (r ), P(Ey (r ))) and as a “submission” value, where Ey (r ) is an encryption of a

random value r and P(Ey (r )) is a non-interactive zero-knowledge proof of knowledge of r .
(2) To record an observation for counter t , DPj replaces its submission value with (E(−bt j ),

P(E(−bt j ))) and erases from memory information about this operation.

(3) When the collection period is complete, each DP submits for every counter its submission

value for that counter. The protocol proceeds identically as before, but in the final result we

count the number of plaintext counters that are equal to 0.

Security. Upon corrupting a DPj , an adaptive adversary now learns the original blind values for

all counters. This means adaptive adversaries are able not only to set the submission of corrupt

DPs to 1, as before, but may also force this value to be 0 as well regardless of previous observations

by that adaptively corrupted DP. For set-union, adaptive adversaries could not revert previously

recorded observations. We note however, that in both cases when the adversary submits malicious

values on behalf of adaptively corrupted DPs, it knows nothing about the previous value for each
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counter. Thus the intersection protocol preserves the most important adaptive security property:

that no private data is revealed upon an adaptive corruption.

Efficiency. With respect to efficiency, we expect the additional computation and communication

costs to be substantial but small enough that the protocol remains usable in practice. More precisely,

the adjustments require each DP to perform a public-key encryption and non-interactive zero-

knowledge proof to record an observation, whereas for set union, they simply randomize a plaintext

counter. For communication cost, using the Fiat-Shamir heuristic and assuming group elements

and plaintext elements of Zq are roughly equal size, the total cost during input submission should

increase from one plaintext counter (for each counter held by each DP) to 4 (two each for the

ciphertext and proof) with other phases of the protocol unchanged.

9 CONCLUSION AND FUTUREWORK
We present the PSC protocols for securely computing the cardinality of set union and set intersection

across multiple parties. PSC is secure against an active adversary controlling all but one honest party,

provides adaptive security for the Data Parties, makes the adversary accountable for disrupting the

protocol, and produces differentially-private outputs. Our implementation of PSC is available for

download at https://github.com/GUSecLab/psc. Future work includes developing the sketch-based

approach [14] by modifying generic MPC protocols to provide all our security properties, applying

efficiency improvements in zero-knowledge proofs [4, 9], and investigating batching broadcasts [2]

to improve performance while mainting our termination guarantees.
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A COMMITMENTS AND COINS
For reference, in the section we repeat the one-to-many commitment functionality given in [12]

(Figure 12), present an accountable coin-flipping functionality (Figure 13), and give a protocol that

UC-realizes the coin flipping functionality and the corresponding proof (Figure 14).

F 1:M

MCOM

(1) Commit Phase: Upon receiving a message (commit, m) from CPj with m ∈ {0, 1},
record the tuple (CPj ,m) and send (receipt, CPj ) to all parties.

(2) Prove Phase: Upon receiving a message (reveal) from CPj , if a tuple (CPj , m) was

previously recorded, then send the message (reveal,m) to all parties.

Fig. 12. F 1:M

MCOM
, the ideal functionality for one-to-many commitments.

F
COIN

(1) (Round 1) Wait to receive GenerateCoins from each CP

(2) (Round 2) If received GenerateCoins from each CP, generate
®b ∈ {0, 1}n at random

and broadcast
®b to all CPs. Otherwise, broadcast (Blame, L) where L where L is the set

of the CPs from whom messages are missing from Round 1.

Fig. 13. F
COIN

, the ideal coin flipping functionality.

πCOIN

(1) (Round 1) Commitments. Each CPj selects bj ∈ {0, 1} at random and commits to bj
to every other CP using F 1:M

MCOM
.

(2) If a CP has received a commitment receipt from all other CPs, each addressed to the set

of all CPs, proceed to Round 2. Otherwise, broadcast (Blame, L) where L is the set of

CPs for which a correct receipt was not received and then exit.

(3) (Round 2) Opening. Each CPj opens bj to all CPs using F 1:M

MCOM
. If a CP receives a valid

opening from each CP, output b =
⊕

j bj . Otherwise, output (Blame, L) where L is the

set of CPs who have failed to open their commitments to a single bit.

Fig. 14. πCOIN, an accountable coin-flipping protocol

Theorem A.1. The protocol πCOIN UC-realizes the F
COIN

functionality in the static-corruption,

synchronous, (F
BC
, F 1:M

MCOM
)-hybrid model if there is at least one honest CP.

Proof. We define a simulator S as follows: S runs a copy of the adversary A, and simulates the

honest parties and ideal functionalities honestly. If a malicious party commits during the commit

phase and opens it to an element of {0, 1} in the opening phase, S sends GenerateCoin to F
COIN
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on behalf of that malicious party. We observe that every dishonest party P either completes a valid

opening in the second phase of the protocol, in which case F
COIN

has received GenerateCoin

from P (through S), or P has failed to produce a valid opening, in which it is blamed by all honest

(simulated) CPs. Finally, in the case that all parties open commitments and F
COIN

outputs a uniformly

random bit, this bit is identically distributed to ⊕jbj in the simulation, since bj is random for honest

j, and dishonest CPs must commit to their bits without any information about the honest parties’

selections. □

We will need a vector of n coins, so we write F
N-COIN

as n independent copies of F
COIN

, which

can be joined into a single protocol using the JUC theorem from [13]. Similarly, we will require

commitments to strings of bits, so we write F 1:M

S-MCOM
to indicate the protocol where F 1:M

MCOM
is

invoked multiple times to produce a commitment to a bit string rather than a single bit.
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